
Learning to Code and Collaborate in a Web
Environment

Škorić, Igor; Orehovački, Tihomir; Ivašić Kos, Marina

Source / Izvornik: Advances in Human Factors in Training, Education, and Learning
Sciences, 2018, 54 - 65

Conference paper / Rad u zborniku

Publication status / Verzija rada: Accepted version / Završna verzija rukopisa prihvaćena
za objavljivanje (postprint)

https://doi.org/10.1007/978-3-319-93882-0_6

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:195:109071

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-27

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of
Informatics and Digital Technologies - INFORI
Repository

https://doi.org/10.1007/978-3-319-93882-0_6
https://urn.nsk.hr/urn:nbn:hr:195:109071
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://www.unirepository.svkri.uniri.hr/islandora/object/infri:1026
https://dabar.srce.hr/islandora/object/infri:1026

Learning to Code and Collaborate in a Web Environment

Igor Škorić1, Tihomir Orehovački1[0000-0002-8606-0607], and Marina Ivašić Kos2[0000-0002-

1940-5089]

1 Juraj Dobrila University of Pula, Faculty of Informatics, Zagrebačka 30, 52100 Pula, Croatia
igor.skoric@unipu.hr, tihomir.orehovacki@unipu.hr

2 University of Rijeka, Department of Informatics, Radmile Matejčić 2, 51000 Rijeka, Croatia
marinai@inf.uniri.hr

Abstract. Programming is a core skill that all computer science students should
adopt, but mastering that skill is a demanding task. Educational institutions
must find a way to alleviate problems associated with learning programming
and to offer a service to an increased number of applicants. Part of these efforts
is the use of Web tools in acquiring programming skills. The Web is a social
platform and is designed to promote communication, collaboration, and sharing.
Use of these tools in teaching programming prepares students for work in a dis-
tributed work environment but also opens up a possibility of improving learning
process through new forms of interaction between students and lecturers. The
aim of this paper is to provide an overview of Web programming tools with an
emphasis on collaborative editors and discuss challenges they are addressing as
well as possibilities of their application in the learning environment. As a fol-
low up, a new taxonomy of programming learning tools is proposed to facilitate
the comparison of these tools and selection of a suitable one for the particular
learning activity.

Keywords: Learning Programming, Collaborative Learning, Web Collabora-
tive Tools.

1 Introduction

Programming forms the core of Computer Science (CS) education. It is essential that
every CS student acquires programming skills. However, mastering programming
courses is a difficult task for many students which is the reason why they have a low
pass and high dropout rates [1], [2]. Lahtinen et al. [3] justified the set forth with the
fact that programming contains numerous complex and abstract concepts. The syntax
of standard programming languages is often complex and not well adapted to educa-
tion [4]. Even if they master syntax of programming language, students do not know
how to organize commands into a meaningful program [5]. Ben-Ari [6] points out that
student often do not have an effective mental model of computers and do not under-
stand the consequences of the execution of the commands or current state of the pro-
gram. Some other factors (e.g. student motivation [7]) can also significantly affect
their success in learning programming. Sorva et al. [8] summed up the students' diffi-

2

culties and listed five major challenges that a student must overcome to master pro-
gramming: static perceptions of programming, difficulties understanding the comput-
er, misconceptions about fundamental programming constructs, and struggles with
tracing of program state. These problems inspired several decades of research into the
learning and teaching of programming [9]. These studies cover a wide range of topics.
One of the most common topics in CS education research are programming tools [9],
[10]. They represent an essential element that allows different theories, models, and
techniques to be successfully applied in programming education and is therefore un-
derstandable why programming tools are important. Since the standard programming
tools are not tailored to education, special tools have been developed for this purpose.
Researchers have built numerous tools with the intention to facilitate teaching and
learning programming [11].

The remainder of the paper is structured as follows. Section 2 describes some of
the programming learning tools and gives an overview of existing taxonomies of such
tools. Section 3 describes the evolution of these tools and explains why the existing
taxonomy has become insufficient. Section 4 introduces and explains the new taxon-
omy of collaborative Web learning tools for programming. Conclusions are presented
in section 5.

2 Learning Programming Tools Taxonomy

The complexity of standard programming languages is one among many problems
associated with programming learning all the tools for learning programming are
trying to solve. The LOGO program environment [12] was developed in 1967 specifi-
cally for educational purposes. It was followed by a family of similar novice pro-
gramming environments [13]. Using a series of commands, a student could draw
something with a turtle graphics. In that respect, the problem that the program solved
was closer and more understandable to the student. The idea that a student writes a
program that solves familiar problem (like drawing rectangle) is also elaborated in
programming tool 'Karel the Robot' [14]. This tool combines the simplified program-
ming language and the environment in which the student program manages the robot
movements. It was followed by several similar tools, such as 'Karel J Robot' [15] or
Guido van Robot [16]. This type of tool that uses a physical metaphor to reduce the
distance between the student's mental models and program concepts is commonly
referred to as a micro-world [17]. The use of visual metaphors to display certain pro-
gramming concepts is a technique applied in a number of programming learning tools,
such as BlueJ [18], which visualizes dynamic elements of a program (variables, ob-
jects, etc.) with simple graphical symbols. Some tools use virtual worlds in which
objects are created and manipulated with programming. An example of such tools is
Alice [19]. Another interesting tool for learning programming is Scratch [20]. It is
designed to help children learn coding, and computational thinking. With Scratch,
pupils can create interactive stories, games, and animations, and programming is done
by matching different pieces of the puzzle that represent commands. Verificator [21]
is a tool that prevents students from making errors and helps them to learn language

3

syntax and adopt good programming habits. The tool forces students to properly
shape the program structure, to regularly check if the program contains errors and
facilitates their correction. For years, researchers have created a multitude of various
tools to help students learn programming [11]. Their taxonomy is briefly explained in
the following sub-section.

2.1 Taxonomy of Learning Programming Tools

To organize a wide variety of tools that can help in the acquisition of programming
skills we have to somehow categorize them. In survey of tools for learning program-
ming [22] tools are classified into the following four groups:

 Programming environments - Allow students to experiment with specific fea-
tures of programming language and are used in program construction, compilation,
testing and debugging.

 Debugging aids - Used by programmers to test programs, observe program behav-
ior during execution, detect, and correct errors.

 Intelligent tutoring systems - Allow access to tutoring and testing material, offer
adaptive instruction, analyze student responses, determine correctness, and provide
feedback and advice based on stored expert knowledge.

 Intelligent programming environments - Combine features of intelligent tutoring
systems with tools used in problem-solving and program development process.

In the survey of literature on the teaching of introductory programming [23] authors
have pointed out other categories:

 Visualization tools - Show certain aspects of program dynamics through visual
metaphors.

 Automated rating tools - Allow students to submit their programs, and give them
a rating. These tools most commonly use pre-prepared test cases to check whether
the program runs correctly.

 Programming environments - Different form of integrated development envi-
ronment specifically adapted to the educational context

 Other tools - all other tools that do not belong to the previously described group

Although this taxonomy clearly classifies tools into different groups, it is not suffi-
ciently detailed. Programming learning tools are created with a clear goal to facilitate
learning a certain aspect of programming using a specific approach. In that context,
when we want to select a particular tool, it is important to understand which problem
it solves and in what manner. In order to understand the purpose and nature of the
programming tool extensive taxonomy was developed by Kelleher and Pausch [11].
In their taxonomy, tools are categorized in two main groups: teaching systems and
empowering systems. The first group consists of "systems that attempt to teach pro-
gramming for its own sake" and second group of "those that attempt to support the
use of programming in pursuit of another goal" [11]. Each group is further decom-
posed by the primary aspect of programming that the system attempts to simplify (e.g.

4

expressing programs). In addition, each aspect is parted into a sub-problem that it
solves, and the each sub-problem is decomposed into the techniques by which it is
solved. Each tool can appear in the taxonomy only once, based on its primary goal.
This can lead to a situation where a tool that is based on solving multiple problems is
only in one group, or that two similar tools are placed in different groups.

Some studies in the field related to only one set of programming tools. In this con-
text, more authors explored the use of visualization tools in learning programming.
Under the influence of the study [24] which links the success of using visualization
tools and student engagement, taxonomy with five levels describing the extent of
students’ engagement when using visualization tools was introduced [25]. The afore-
mentioned taxonomy describes the following levels of engagement: no viewing, view-
ing, responding, changing, constructing, and presenting. Study [26] presented extend-
ed engagement taxonomy (EET) in which four additional levels (controlled viewing,
entering input, and reviewing) were introduced. Building on the set forth research,
study [27] developed two-dimensional engagement taxonomy (2DET) that relates the
direct engagement that the student has with visualization and content ownership. Lev-
els in engagement dimension are similar to those in the EET, and levels in ownership
dimension are: given content, own cases, modified content, and own content. The
taxonomy was used as a classification tool for describing the visualization tools.

In [28] authors proposed three-dimensional taxonomy of Web 2.0 applications with
educational potential. Proposed dimensions are: type (wiki, blog, microblog, social
network...), function (collaboration, sharing, communication, knowledge organiza-
tion, learning support, and artifacts integration) and cognitive processes (remember-
ing, understanding, applying, analyzing, evaluating and creating). Although it is in-
tended for education in general, it can be applied to learning programming as well.

3 Evolution of Learning Programming Tools

Difficulties that novices have with fundamental programming concepts encourage
further research in CS education area. New studies are looking for innovative ap-
proaches, techniques, and tools that will alleviate learning. Some of the research strat-
egies show the potential to improve the learning outcomes of programming. For in-
stance, study [29] listed pair programming, peer teaching, and media computing as
examples of such successful approaches. They have concluded that these three ap-
proaches help students to learn and retain knowledge and that their combination im-
proves the effect. In [30] authors explored the effects of thirteen different approaches
to teaching programming. Based on the analysis of primary studies, they concluded
that pedagogic interventions based on collaborative learning (cooperative learning,
team-based learning, and paired programming) have shown biggest improvement in
learning outcomes. Research [31] found that the simultaneous use of three techniques
of active learning (media computation, pair programming, and peer instruction) sig-
nificantly improves students' results in the introductory programming course. Such
results have contributed to the broad acceptance of collaborative techniques in learn-
ing programming, and the adoption of these techniques has created a need for tools

5

that comply with this way of learning. Another important factor influencing the de-
velopment of the learning tools is technology. The appearance of the Web 2.0 with
Ajax technology, HTML 5 and JavaScript enabled the emergence of a new platform.
Web environment offers many advantages over desktop [32]: unique interface always
available from anywhere, instant collaboration, and easy integration with other ser-
vices. Users do not need to worry about installing, maintaining, and updating. Today,
we can find numerous development tools as Web services. Some of these tools are not
created with the idea of being used in education. For example, CoderPad1 was created
for conducting programming interviews but can be used for real-time collaborative
programming in education. Some programming environments such as CodePen2 or
repl.it3 have no primary educational goals, and some as Codewars4 are made solely
for educational use. Some of these tools are simple such as Ideone5, and some are
complex integrated Web-based development interfaces such as Codeanywhere6 or
Cloud97. These products do not have all the capabilities of their desktop counterparts
but support complete process of software development on the Web. This trend of
adding collaborative elements and a gradual transition to the Web platform is fol-
lowed by all other programming tools. Different tools use different approaches.
Codeboard8 is a combination of Web-based IDE with elements of learning manage-
ment system. CodingBat9 besides the Web environment also includes prepared prob-
lems on which students can practice. Code Hunt10 is a combination of program envi-
ronment and video game.

Web is designed to enable communication, collaboration, and sharing. For tools in
such an environment, it is natural to contain the social features. Development of dis-
tance learning and the popularity of Massively Open Online Courses (MOOCs) also
contributed to the popularity of the Web. Collaboration and feeling of community are
important for MOOCs to be effective [33]. Collaborative functionalities of a tool are
also desirable in face-to-face learning. They allow a smaller number of teaching staff
to provide education to a larger number of users.

The integrated development interface (IDE) has also changed considerably over
time. Different integrated development environments have different capabilities and
different toolkits, but they all contain editor, compiler, and debugger. That set of tools
represents a minimum which is sufficient to a programmer to create a program. At the
beginning of IDE evolution, new features were added that facilitated the program-
mer’s work (e.g. coloring the code). All that time, the main purpose of IDE was to
improve individual performance of a programmer. As software development over

1 https://coderpad.io/
2 https://codepen.io/#
3 https://repl.it/
4 https://www.codewars.com/
5 https://ideone.com/
6 https://codeanywhere.com
7 https://c9.io
8 https://codeboard.io/
9 http://codingbat.com/java
10 https://www.codehunt.com/

6

time grown complex, it became less the result of an individual's work and more fre-
quently the outcome of the work of the whole team of specialists.

Collaboration is today a key element in software development because it signifi-
cantly contributes to the project's performance [34] and development team members
spend a significant amount of time on employing it. Moreover, nowadays it is not
uncommon that the team members are dislocated. It is about a distributed software
development where the challenge of achieving successful collaboration among team
members is difficult. To make this collaboration among members of the development
team as easy as possible, numerous tools are used. Some of these tools are common,
widely accepted communication tools such as e-mail or instant messaging (IM), while
other tools are specifically created to support software development such as the ver-
sion control systems (VCS). In time, collaboration and communication tools have
been embedded in integrated development environments such as Visual Studio11. The
integration of collaborative tools with development tools allows developers to stay all
the time in the same cognitive context (as they do not leave the environment). Such
tools designed to improve the overall development team's performance are called
collaborative development environments (CDEs) [35]. Today, almost all software
development tools have collaborative functionality. IDEs created for professionals are
often not suitable for learning as the amount of their functionalities can easily over-
whelm the student. Learning tools must be easy to use and understandable. Their
characteristics must be carefully chosen to match the pedagogical approach and type
of education. With an objective to address this issue, we proposed a novel taxonomy
that will be presented in following section.

4 Taxonomy of collaborative tools for learning programming

Programming education goes through the constant changes and tools we use in that
respect follow these changes. On the one hand, the popularization of new pedagogical
techniques (collaboration, peer learning, etc.) and on the other hand technological
progress, led to the emergence of new tools drawing on Web 2.0 platform. Active and
collaborative learning techniques encouraged the development of tools that facilitate
student engagement in the learning process, their cooperation, and mutual communi-
cation. The Web platform facilitates this transformation. Novel tools should respect
the nature of the Web environment and should therefore include sharing, collabora-
tion, and communication functionalities. All the aforementioned challenges the ap-
propriateness of using existing taxonomies for that kind of tools.

4.1 Can we use old taxonomy for new tools?

Taxonomy is a system of classification used to organize concepts into a framework
for discussion or analysis. With taxonomy we can name, describe, and classify con-

11 www.visualstudio.com

7

cepts on the basis of shared characteristics. If the result of our work is the taxonomy
of programming learning tools, it should classify these tools by the properties that are
essential to us for use of these tools. Taking into account that no single learning pro-
gramming tool can address all tasks, taxonomy should help us to choose the right tool
for our problem.

For example, we will take the LogoBlocks program [36], which was in a taxonomy
developed by Kelleher and Pausch [11] classified in a group of tools that students can
use to construct programs by using objects. Let us imagine a similar Web tool that,
besides the described functionality, also allows students to share the results of their
work with others, and in which programmer can chat with other colleagues and other
students can watch how he creates a program through a shared screen. This new tool
in taxonomy introduced by Kelleher and Pausch will be in the same group as LegoB-
locks. Two tools that differ significantly would be placed in the same group. Although
described taxonomy has well-defined groups, due to the limitation that the tool can be
in only one group, it is inadequate to describe them completely. The Web tool allows
students to collaborate, and interaction is an important component of the successful
collaboration. Since research [24] demonstrated that student engagement levels are
positively correlated with the amount of interaction, we must also consider it as di-
mension. Kelleher and Pausch omitted that element in their taxonomy but dimension
of engagement is part of visualization tools taxonomies [25], [26], [27]. The next
important factor to take into account is the nature of communication that can be
achieved through that tool. The nature of communication is complex because it can
be, on one hand, synchronous or asynchronous, as well as visual, vocal or textual, on
the other one. In that respect, the same tool can support many different forms of
communication. Depending on whether we plan face-to-face or distant learning, syn-
chronous or asynchronous communication, we will select a tool that supports com-
munication that is appropriate for the planned activity type.

4.2 Proposed taxonomy

Since different types of tools can have completely different requirements, we will
only limit our study to Web based integrated development environments. In taxonomy
developed by Pears et al. [23] these tools belong to the group of programming envi-
ronments. They are the core tools for learning programming and most of the time in
CS courses students are working with such tools. The purpose of this taxonomy is to
classify these tools in a way that enables the lecturer to choose the optimal tool for a
type of pedagogical activity (s)he plans to use in the course. We assume that some of
the collaborative learning techniques will be used as well since in that manner the
advantages of these Web tools can best come to the fore.

The proposed taxonomy (shown in Table 1.) consists of three dimensions. The first
one is the type of help which describes how a tool assists the student to create a pro-
gram. This dimension corresponds to the fourth column in the taxonomy developed
by Kelleher and Pausch [11]. As one tool can assist the student in several ways, it can
be assigned to several types of help. The lecturer can choose the tool based on the

8

help that is the most suitable for students. The second dimension is communication
which describes the types of communication students can achieve through the tool.

Table 1. Taxonomy of Web programming environments

Dimension Values

Type of help

Simplify the Language
Prevent Syntax Errors
Construct Programs Using Objects
Create Programs Using Interface Actions
Provide Multiple Methods for Creating Programs
New Programming Models
Making New Models Accessible
Tracking Program Execution
Make Programming Concrete
Models of Program Execution
Solve Problems by Positioning Objects
Solve Problems Using Code
Demonstrate Actions in the Interface
Demonstrate Conditions and Actions
Specify Actions
Make the Language More Understandable
Improve Interaction with Language
Integration with Environment

Communication

Chat
Video
Audio
Forum
Blog
Wiki
Social network
Blackboard
...

Engagement

No viewing
Sharing
Viewing
Communicating
Changing

With this dimension, the teacher with respect to the type of planned activity (face

to face, distant, synchronous, or asynchronous) selects the tool that best suits his/her
needs. When choosing a communication method, students' preferences may also be
considered.

9

The third dimension is engagement which corresponds to the dimension of the
same name in the taxonomy of visualization tools. One or more values can be includ-
ed in this dimension:
 no viewing - every student can see only his/hers workspace
 sharing - every student can see only his/hers workspace, but can share his/her work

with peers
 viewing - student can see workspace of other students or teacher
 communicating - student can see workspace of other students or teacher and can

communicate through a tool
 constructing - a group of students can jointly create a program by using a tool

Each dimension allows us to evaluate one of the aspects of tool suitability. The
first dimension allows us to assess whether the tool corresponds to the student's expe-
rience or age. Within this dimension we describe all the ways in which the tool pro-
vides assistance and this allows us to select very precisely the tool that best suits the
planned activity. Beginners are geared to tools that offer more help. Some types of
help are more suitable for younger students, so the 'Create Programs Using Interface
Actions' option would be suitable for elementary students, and the 'Create Programs
Using Interface Actions' option would be appropriate for preschool age.

The second dimension determines the way of communication. If we plan face-to-
face activity, we will select tools that support asynchronous communication. In the
case of distance learning depending on the planned type of activity, we will select the
appropriate type of communication. It can appear that a tool does not incorporate
communication functionality but still can be used in collaborative learning settings. In
this case, the tool is limited to face-to-face teaching where communication among
students is carried out in the form of verbal interaction. The third dimension deter-
mines the level of engagement of students we want to achieve during our activity.
Let's say we want to inspect the code with the students. If we want the lecturer to
show and explain the code in the classroom, and students should just listen, we will
select a tool with 'no viewing' attribute. If we want students to download the program
code on their computers, the tool must support the 'sharing' option. If we carry out the
same activity in distance learning environment, the tool must support the 'viewing'
option, so students can see code on their computers. If we want students to change the
code being viewed then the level of engagement supported by the tool must be 'chang-
ing'.

Table 2 shows a description of three tools (ideone.com, CodeShare12, and Code
hunt) using the described taxonomy. From the first dimension we can see that ide-
one.com and CodeShare are intended for similar audiences - students who do not need
much help. In other two dimensions, these tools differ significantly. Ideone.com does
not support any form of communication so it is only suitable for individual work or
face-to-face group work. On the other hand CodeShare supports audio and video
communication that can be useful in remote learning. CodeShare also supports multi-
ple levels of engagement, so it can be used for different types of activities (e.g. group
code inspection or collaborative programming). Code hunt is as can be seen from a

12 https://codeshare.io/

10

table intended for a completely different audience. It would probably be the most
suitable for elementary school children because of the numerous elements of help. In
addition, it does not contain any communication or engagement functions, so it is only
suitable for individual work.

Table 2. Example of tool categorization

 Dimensions

Tool Type of help
Communica-
tion

Engagement

ideone.com Prevent Syntax Errors Sharing

CodeShare Prevent Syntax Errors
Video
Audio

Sharing
Viewing
Constructing

Code Hunt

Prevent Syntax Errors
Construct Programs Using Ob-
jects
Tracking Program Execution
Solve Problems Using Code

- No viewing

5 Conclusion

The tools for learning programming are one of the most important topics in com-
puter science education research. The development of these tools is conditioned by
two factors. The first one is the progress in the pedagogical interventions we use in
education, and the second one is technological advancement. Tools are just a means to
implement a particular strategy, model, technique or technology, and how new strate-
gies, new models or techniques are emerging, and new tools are being developed as
well. Previous studies show that the techniques that encourage student's engagement
and their collaboration improve the learning outcomes of programming courses. This
has led to the development of tools that support such forms of learning. The transition
to the Web platform has further facilitated the development and increased the popu-
larity of such tools. In order to achieve the optimum effect of education, it is neces-
sary to carefully select the appropriate tool that best suits the chosen pedagogical
technique. In this study, we have proposed taxonomy of Web programming environ-
ments whose aim is to alleviate a choice of tool that best suits the planned learning
activity. The proposed taxonomy allows the classification of tools based on three
simple dimensions that indicate whether the tool is suitable for a particular situation.

11

References

1. Simon, B., Lister, R., Fincher, S.: Multi-institutional computer science education research:
A review of recent studies of novice understanding. In: Frontiers in Education Conference,
36th Annual, pp. 12-17. IEEE. (2009)

2. Watson, C., Li, F. W.: Failure rates in introductory programming revisited. In: Proceedings
of the 2014 conference on Innovation & technology in computer science education, pp. 39-
44. ACM. (2014)

3. Lahtinen, E., Ala-Mutka, K., Järvinen, H. M.: A study of the difficulties of novice pro-
grammers. In: Acm Sigcse Bulletin, 37(3), pp. 14-18. ACM. (2005)

4. Gomes, A., Mendes, A. J.: Learning to program-difficulties and solutions. In: International
Conference on Engineering Education–ICEE (2007)

5. Winslow, L. E.: Programming pedagogy—a psychological overview. ACM Sigcse Bulle-
tin, 28(3), 17-22. (1996)

6. Ben-Ari, M.: Constructivism in computer science education. In: ACM Sigcse Bulletin,.
30(1), pp. 257-261. ACM. (1998)

7. Jenkins, T., Davy, J.: Diversity and motivation in introductory programming. Innovation in
Teaching and Learning in Information and Computer Sciences, 1(1), 1-9. (2002)

8. Sorva, J., Karavirta, V., Malmi, L.: A review of generic program visualization systems for
introductory programming education. ACM Transactions on Computing Education
(TOCE), 13(4), 15. (2013)

9. Valentine, D. W.: CS educational research: a meta-analysis of SIGCSE technical symposi-
um proceedings. ACM SIGCSE Bulletin, 36(1), 255-259. (2004)

10. Sheard, J., Simon, S., Hamilton, M., Lönnberg, J.: Analysis of research into the teaching
and learning of programming. In Proceedings of the fifth international workshop on Com-
puting education research workshop, pp. 93-104. ACM. (2009)

11. Kelleher, C., Pausch, R.: Lowering the barriers to programming: A taxonomy of program-
ming environments and languages for novice programmers. ACM Computing Surveys
(CSUR), 37(2), 83-137. (2005)

12. Feurzeig, W., Papert, S. A., Lawler, B.: Programming-languages as a conceptual frame-
work for teaching mathematics. Interactive Learning Environments, 19(5), 487-501.
(2011)

13. Guzdial, M.: Programming environments for novices. Computer science education re-
search, 2004, 127-154. (2004)

14. Pattis, R. E.: Karel the robot: a gentle introduction to the art of programming. John Wiley
& Sons, Inc. (1981)

15. Bergin, J., Stehlik, M., Roberts, J., Pattis, R.: Karel J. Robot: A gentle introduction to the
art of object-oriented programming in Java. Dream Songs. (2005)

16. Kasurinen, J., Purmonen, M., Nikula, U.: A study of visualization in introductory pro-
gramming. In: 20th Annual Psychology of Programming Interest Group Conference, PPIG.
(2008)

17. Xinogalos, S., Satratzemi, M., Dagdilelis, V.: An introduction to object-oriented pro-
gramming with a didactic microworld: objectKarel. Computers & Education, 47(2), 148-
171. (2006)

18. Kölling, M., Quig, B., Patterson, A., Rosenberg, J.: The BlueJ system and its pedagogy.
Computer Science Education, 13(4), 249-268. (2003)

19. Cooper, S., Dann, W., Pausch, R.: Alice: a 3-D tool for introductory programming con-
cepts. In Journal of Computing Sciences in Colleges, Vol. 15, No. 5, 107-116. Consortium
for Computing Sciences in Colleges. (2000)

12

20. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
Kafai, Y.: Scratch: programming for all. Communications of the ACM, 52(11), 60-67.
(2009)

21. Radošević, D., Orehovački, T., Lovrenčić, A.: Verificator: educational tool for learning
programming. Informatics in Education 8(2), 261-280. (2009)

22. Deek, F. P., McHugh, J. A.: A survey and critical analysis of tools for learning program-
ming. Computer Science Education, 8(2), 130-178. (1998)

23. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Paterson, J. :A
survey of literature on the teaching of introductory programming. In ACM SIGCSE Bulle-
tin, 39(4), pp. 204-223. ACM. (2007)

24. Hundhausen, C. D., Douglas, S. A., Stasko, J. T.: A meta-study of algorithm visualization
effectiveness. Journal of Visual Languages & Computing, 13(3), 259-290. (2002)

25. Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Veláz-
quez-Iturbide, J. Á.: Exploring the role of visualization and engagement in computer sci-
ence education. In ACM Sigcse Bulletin, 35(2), pp. 131-152. ACM. (2002)

26. Myller, N., Bednarik, R., Sutinen, E., Ben-Ari, M.: Extending the engagement taxonomy:
Software visualization and collaborative learning. ACM Transactions on Computing Edu-
cation (TOCE), 9(1), 7. (2009)

27. Sorva, J., Karavirta, V., Malmi, L.: A review of generic program visualization systems for
introductory programming education. ACM Transactions on Computing Education
(TOCE), 13(4), 15. (2013)

28. Orehovački, T., Bubaš, G., Kovačić, A.: Taxonomy of Web 2.0 applications with educa-
tional potential. Transformation in teaching: Social media strategies in higher education,
43-72. (2012)

29. Porter, L., Guzdial, M., McDowell, C., Simon, B.: Success in introductory programming:
what works?. Communications of the ACM, 56(8), 34-36. (2013)

30. Vihavainen, A., Airaksinen, J., Watson, C.: A systematic review of approaches for teach-
ing introductory programming and their influence on success. In Proceedings of the tenth
annual conference on International computing education research, (pp. 19-26). ACM.
(2014)

31. Porter, L., Simon, B.: Retaining nearly one-third more majors with a trio of instructional
best practices in CS1. In Proceeding of the 44th ACM technical symposium on Computer
science education, pp. 165-170. ACM. (2013)

32. Kats, L. C., Vogelij, R. G., Kalleberg, K. T., Visser, E.: Software development environ-
ments on the web: a research agenda. In Proceedings of the ACM international symposium
on New ideas, new paradigms, and reflections on programming and software, pp. 99-116.
ACM. (2012).

33. Hew, K. F., Cheung, W. S.: Students’ and instructors’ use of massive open online courses
(MOOCs): Motivations and challenges. Educational research review, 12, 45-58. (2014).

34. Cook, C. L. R. Towards computer-supported collaborative software engineering. (2007).
35. Booch, G., Brown, A. W.: Collaborative development environments. Advances in comput-

ers, 59(1), 1-27. (2003).
36. Begel, A.: LogoBlocks: A graphical programming language for interacting with the world.

Electrical Engineering and Computer Science Department, MIT, Boston, MA, 62-64.
(1996).

