
Development of MESOC Toolkit Web Application in
React

Jermaniš, Erik

Undergraduate thesis / Završni rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Rijeka / Sveučilište u Rijeci

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:195:798474

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-10-15

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of
Informatics and Digital Technologies - INFORI
Repository

https://urn.nsk.hr/urn:nbn:hr:195:798474
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://zir.nsk.hr/islandora/object/infri:775
https://www.unirepository.svkri.uniri.hr/islandora/object/infri:775
https://dabar.srce.hr/islandora/object/infri:775

University of Rijeka – Department of Informatics

Erik Jermaniš

Development of MESOC Toolkit Web

Application in React

Bachelor’s thesis

Mentor: prof. dr. sc. Sanda Martinčić – Ipšić dipl. Ing.

Rijeka, 05.7.2021.

1

2

Abstract

Application described in this thesis is a web application which serves as georeferenced

visualization tool for assessing the value and impacts of cultural policies and practices.

Application is written in React – a JavaScript library for building user interfaces.

The development process consists of two parts. First part consists of planning and creating

the user experience and user interface, and after that, coding the application. Second task is

connecting the application to a backend server that processes the data collected in the

application. The backend server consists of complex NLP tasks performed in a pipeline, and

serving the data to the frontend application.

Keywords: React, web application, frontend

3

HR Sažetak

Razvoj MESOC web aplikacije u React-u

Aplikacija opisana u ovom završnom radu je web aplikacija koja služi kao georeferencirani alat

za vizualizaciju procjene vrijednosti i utjecaja kulturnih politika i praksi. Aplikacija je

napravljena u React-u – JavaScript biblioteci za izgradnju korisničkih sučelja.

Proces razvoja aplikacije sastoji se od dva dijela. Prvi dio uključuje planiranje i kreiranje

korisničkog iskustva te korisničkog sučelja, a nakon toga kodiranje same aplikacije. Drugi

zadatak je povezivanje aplikacije sa pozadinskim poslužiteljem koji obrađuje podatke

prikupljene u aplikaciji. Pozadinski poslužitelj izvodi slijed postupaka računalne analize and

ulaznim tekstovima te priprema podatke za prikaz na web aplikaciji.

Ključne riječi: React, web aplikacija, frontend

4

Table of Contents

Abstract .. 2

HR Sažetak .. 3

Table of Contents ... 4

1. Introduction .. 5

2. Creating the mock-up ... 6

3. Coding the application .. 7

3.1. App.js ... 7

3.2. Browse.js ... 9

3.3. MyDocuments.js.. 10

3.4. Analysis.js .. 11

3.5. UploadDocument.js ... 13

3.6. SendFeedback.js .. 14

4. Conclusion .. 15

Appendix .. 16

References ... 17

Table of figures .. 18

5

1. Introduction

Web application development is the process involved with building a web application. Most

cases of web application development will involve defining the problem, mocking-up the

solution, choosing a development tool, and finally, building the web application.

First and the most important part of development process of every application is defining the

problem and creating the plan for the application development. It is not uncommon for

misunderstandings to arise between the developer and the client. This happens because

people tend to interpret the world through their own lenses or sense of reality. By creating a

good plan, the developers are ensuring that they get on the same page with the client and

that they avoid any potential misunderstandings.

There are several ways of defining a development plan, some of which are [1]:

• Creating a wireframe,

• Creating a working mock-up,

• Creating a task list,

• Defining use cases.

The second method, creating a working mock-up, was used to plan the development process

of MESOC Toolkit.

This thesis is organized as follows: Chapter 2 describes the process of defining the

functionalities and creating the final mock-up for the application. Chapter 3 describes the

coding phase, and the thesis ends with conclusions and plans for the future work.

6

2. Creating the mock-up

The mock-up for MESOC Toolkit was created in a tool called Figma. Figma is a vector graphics

editor and prototyping tool which is primarily web based. It allows multiple users to work on

the same design file at the same time. This offers a way for seamless collaboration between

designers, developers and clients. Some of Figma’s competitors are:

• Sketch [2]

• Adobe XD [3]

• UXPin [4]

Figma’s user interface is considered beginner friendly as it consists of only 7 simple tools to

begin with:

1. Move tool,

2. Frame tool,

3. Rectangle tool,

4. Pen tool,

5. Text tool,

6. Hand tool,

7. Comment tool.

Mock-ups consist of two important parts: design elements and user flow diagrams. Firstly, all

the design elements needed to stack the mock-up were created using earlier mentioned tools

in combination with more advanced and more powerful tools that Figma offers. When

creating the design elements, it was necessary to pay attention to the rules of good design

and follow the given design language. Secondly, after creating the necessary design elements,

they needed to be connected by user flow streams. User flow streams describe the desired

behaviour of the application. For example, by connecting a particular button to a given frame

element, we are basically saying: “When the user clicks this button, I want the application to

switch to the specified screen (frame)”. By creating all the elements and connecting them

properly, we have successfully created a fully working prototype.

The first prototype version may be finished, but the work on this phase is still far from

finished. The first version of the prototype usually requires adjustments and detailed layouts

before proceeding with the implementation. After all, this is exactly why it is strongly

recommended to create the mock-up before coding since changing the mock-up takes way

less time and effort than changing the actual code.

After the intensive collaboration between developers and end-users, the final mock-up is

created. After the mock-up definition, the coding phase can be initiated.

7

3. Coding the application

This phase of the development process was divided into multiple parts. Each part represents

one of the application screens, except for the App.js section. App.js section is dedicated to

the setup process of the whole application.

3.1. App.js

The usual starting point of React applications is the App.js file. This is a place where we define

the architecture, or in other words, the skeleton of the application [5].

The first, and the most obvious, part of creating the application skeleton is the process of

defining the routing of an application. Routing is the ability to move between different parts

of an application when a user enters a URL or clicks an element like link, button, image etc

[6]. First, it is necessary to know which routes an application will have. The initial routing is

defined in the planning phase. Once it is known exactly how the URL structure should look

like, it’s time to develop the code. React-router is the perfect package for achieving this task.

This is a package that provides declarative routing for React. There are five main routes that

were declared using react-router’s components “Route” and “Switch”:

1. /browse,

2. /my-documents,

3. /upload-document,

4. /send-feedback,

5. /:analysisType/:analysisKey.

These routes are reserved for the most important pages of the application. There are couple

of more routes like “sign-in” or “verification” that are used for the maintenance pages and

user management pages. The code that defines mentioned routes is shown in Figure 1.

8

Figure 1: Code that defines routing in MESOC Toolkit

The second major part of an application’s setup process is defining the usage of the http

cookies. Http cookies, which are also called web cookies or cookies, are small blocks of data

created by a web server, and are stored on the user’s computer or whichever other device he

is using for accessing the page [7]. To create and manage cookies in MESOC Toolkit, the react-

cookie package was used. React-cookie is a React specific variant of universal-cookie package

[8] which is used to handle cookies universally throughout the whole JavaScript ecosystem.

Furthermore, react-cookie provides simple and easy to use hook functions that need to be

defined once and can be reused unlimited number of times. A piece of code that defines the

usage of user management cookie in MESOC Toolkit is:

9

const [authCookie, setAuthCookie, removeAuthCookie] =

useCookies(null);

Given line initializes three constant variables:

1. authCookie – the cookie value is stored here,

2. setAuthCookie – a function that is used to create or update particular cookie,

3. removeAuthCookie – as the name suggests, a function that is used for clearing a given

cookie.

In a similar manner, several more cookies were established and used throughout the

application. Those cookies are:

• DGPR Compliant cookie,

• User verification cookie,

• Analysis properties cookie.

This covers all the necessary parts of the App.js file. The next major application part lays in

the Browse.js file.

3.2. Browse.js

The main part of the MESOC Toolkit is located in the Browse.js file. This file consists of an

interactive world map that contains a list of all the cities in the MESOC database. The map is

shown in the Figure 2. Each city is represented by a clickable pin that, when clicked, displays

a popup with brief information about the collection of pilot and scientific studies connected

to that city. Each pin leads to the Analysis screen with more in depth analysis of all the studies.

The analysis screen will be described in Chapter 3.4.

Figure 2: The interactive MESOC world map

10

The map was created with Leaflet [9] – a JavaScript library for building interactive maps.

Leaflet is an open-source library designed with simplicity, performance and usability in mind.

This comes with some caveats, for example, the default map and it’s settings that it offers out

of the box are pretty limited in features. Thankfully, Leaflet can be extended with lots of

official, as well as, community made plugins that make up for the default lack of features. One

of the plugins that were used for the MESOC Toolkit is mapbox-gl-leaflet. This plugin is a

binding from Mapbox GL JS library to a familiar Leaflet library [10]. It offers broader map

customization options than the default ones. In this application, Mapbox was used to remove

the unnecessary “clutter” from the map. The default map comes with marked roads,

institutions, terrain etc. which was not needed for our purposes. The map pins were created

in Figma and then imported as png’s.

3.3. MyDocuments.js

MyDocuments.js is the first protected page that will be covered in this thesis. The page is

intended to be accessible only to registered users and it serves as a file manager. The page is

protected with the help of cookies combined with react-router’s Redirect component. All files

uploaded by the user are displayed here, and are categorized into two main categories:

1. Active documents,

2. Failed documents.

The categorization was made with the help of Reactstrap library [11]. Reactstrap is best

described as a library that provides React components enriched with Bootstrap 4 styling. The

library does not depend neither on jQuery nor Bootstrap JavaScript, however, popper.js is

required for more advanced positioning of content. The categorization was achieved by using

tab-based navigation which is shown in the Figure 2.

Figure 3: Tab-based navigation in MESOC Toolkit

11

To get the navigation working, the following set of Reactstrap’s components are used: Nav,

NavItem, NavLink, TabContent and TabPane [12]. Nav, NavItem and NavLink components

were used to create the actual tabs that are clickable and are used for navigating between

two groups of documents mentioned earlier. TabContent component was used in

combination with TabPane component to create the content placeholders in which our

documents would be stored. On top of all that, this page also uses Table component which

allows the documents to be easily displayed as a mobile responsive table view.

By clicking on the “open” button of each document, user will be redirected on the analysis of

a given document. The analysis is shown on the Analysis screen which is described next.

3.4. Analysis.js

Analysis.js file is the hearth of MESOC Toolkit. This page comes in a format of business

intelligence dashboard and it is responsible for visualisation of the analysis results. This is

where users can browse through their desired data in an interactive way. The page consists

of three different components:

1. Heatmap,

2. Graph,

3. Two similar document lists.

Heatmap is used for displaying the impact of variables per cell in a given document. A

heatmap is a data visualization technique that shows magnitude of a phenomenon as color in

two dimensions. In this application, heatmap uses the variation in color intensity along with

a percentage to display the impact strengths. There are many heatmap solutions packed as

JavaScript libraries or packages but since majority of them is intended for visualization only,

it was necessary to create a custom solution for MESOC Toolkit. This heatmap required

interactivity in a way that user can select individual cell by clicking on it. Our solution was

created using CSS Grid Layout [13]. CSS Grid Layout is a two-dimensional grid-based layout

system that aims to allow developers to create responsive user interfaces using grid-like

structure. This way, we had a full control over rendered heatmap. The click functionality

works thanks to the React state, when user clicks on certain cell, it’s index is stored into state

so the App can perform further actions based on this information. Figure 3 shows the final

result of heatmap rendering.

12

Figure 4: The MESOC matrix represented in a heatmap

The next component is MESOC graph. The graph shows distribution of variables impacting a

selected heatmap cell. It was created with the help of Nivo [14]. Nivo is JavaScript library that

provides supercharged React chart components built on top of d3 [15] library. The best graph

format for this application was bar chart – a chart that presents categorical data with

rectangular bars with heights proportional to the values they represent. The usage of Nivo

charts is pretty simple so only thing that had to be done before rendering a graph was to sort

data in descending order.

Similar document lists are used to display similar documents based on cell similarity or

variable similarity. Lists were created using pure CSS since they are relatively simple

components compared to the rest of MESOC Toolkit’s features.

13

3.5. UploadDocument.js

The upload document page is used for uploading and submitting new documents to MESOC

analysis. The page consists of a simple form which has 4 input fields:

1. Title,

2. Language,

3. Location,

4. File.

Title is a simple html <input> element that accepts strings and, as the name suggests, is

intended for specifying document title.

Language and Location inputs were a bit more complicated to create. They were made with

the help of Reactstrap’s <Select /> component which, under the hood, uses html select

tag. Furthermore, since there were a lot of locations and languages to choose from, it was

necessary to implement a search functionality. Search works so that when the user enters a

string, the application makes a call to a backend server with given string as a parameter.

Before making a call, application waits for 60 milliseconds. These two functionalities have

allowed only the necessary locations or languages to be retrieved from the server. The 60

millisecond wait has a role to prevent the application from sending too many requests to the

server.

The File input, or more precisely, document upload area was created with the help of react-

dropzone package. The traditional default way of uploading files that html offers looks too

basic, so it was decided to go with more complicated, but also more elegant solution. React-

dropzone offers a way to leverage the functionalities of the default <input type=”file”

/> element while transforming it into much more appealing drop-zone component. The

renderd <FileDropzone /> component used in MESOC Toolkit is shown in the Figure 4.

Figure 5: Rendered FileDropzone component

 The drop-zone can, just like the traditional way, be clicked to open a file explorer or it can be

used to “drop” files onto it. Drop-zone like inputs are much better solutions especially for

when users have multiple desktops because they make uploading a file more intuitive.

14

3.6. SendFeedback.js

Lastly, there is a Send feedback page. The important part of the development lifecycle of an

application is testing. Testing is done by developers, testers and by users of the application.

Developers and testers often do a good job of finding and eliminating most of the technical

bugs but there is more to it than just that. Users know the best what are their wants and

needs, so it is very important to listen to the application’s userbase.

Send feedback page is intended for users to write the feedback on the encountered problems

or to provide suggestions for improving the application. From the technical side, this page

consists of a simple form with one <input type=”text” /> element for specifying

email address, and one <textarea /> element used for writing the message body.

15

4. Conclusion

In this thesis, we have discussed the development process of MESOC Toolkit web application.

On top of that, there is a general discussion about developing web applications with React

JavaScript library. We saw many examples of packages that can be used with React to create

robust applications with relative easy. However, React is much more complicated than we

have covered in this thesis. Here, we have focused mainly on MESOC Toolkit.

Furthermore, we now have production ready web application that is connected to a backend

server that is capable of doing advanced natural language processing.

In the future, it’s planned to improve some of the existing application components, and add

several more application parts. Two components that will be improved are:

1. MESOC Graph,

2. Document table on /my-documents screen.

The MESOC Graph will be rotated so the bars are spreading horizontally. This will allow long

variable names to be fully displayed instead of shortening them to fewer characters.

Document table component will receive two improvements. First improvement is formatting

the date column to display the date in ISO 8601 standard [16]. The second improvement will

be adding sort on click functionality to all column headers.

Components that are planned to be added to MESOC Toolkit are:

1. Top 10 keywords list

2. Variable decomposition screen

3. User confirmation screen

16

Appendix

Appendix includes a link to a GitHub repository containing a copy of the web application

featured in the thesis and the accompanying deployment and configuration instructions.

17

References

[1] Amanda Athuraliya (last updated: 2021.). Step-by-Step Visual Guide to Mobile App

Planning. Retrieved from https://creately.com/blog/diagrams/how-to-plan-an-app-visually/

[2] Official Sketch website. Retrieved from https://www.sketch.com/

[3] Official Adobe XD website. Retrieved from https://www.adobe.com/products/xd.html

[4] Official UXPin website. Retrieved from https://www.uxpin.com/

[5] Adam Boduch (2020.) React and React Native: A complete hands-on guide to modern web

and mobile development with React.js, 3rd Edition

[6] Gaurav Singhal (2020.). Pros and Cons of Client-side Routing with React. Retrieved from

https://www.pluralsight.com/guides/pros-and-cons-of-client-side-routing-with-react

[7] Web technology for developers – Using HTTP cookies (2021.). Retrieved from

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

[8] GitHub repository and official documentation of universal-cookie package. Retrieved from

https://github.com/reactivestack/cookies/tree/master/packages/universal-cookie

[9] Official Leaflet website and documentation. Retrieved from https://leafletjs.com/

[10] Official Mapbox GL JS website and documentation. Retrieved from

https://docs.mapbox.com/mapbox-gl-js/api/

[11] Official reactstrap website and documentation. Retrieved from

https://reactstrap.github.io/

[12] List and detailed description of all reactstrap’s components. Retrieved from

https://reactstrap.github.io/components

[13] Web technology for developers – CSS Grid Layout (2021.). Retrieved from

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

[14] Official Nivo website and documentation. Retrieved from https://nivo.rocks/

[15] Official d3 website and documentation. Retrieved from https://d3js.org/

[16] Official ISO Standards website. Retrieved from https://www.iso.org/iso-8601-date-and-

time-format.html

https://creately.com/blog/diagrams/how-to-plan-an-app-visually/
https://www.sketch.com/
https://www.adobe.com/products/xd.html
https://www.uxpin.com/
https://www.pluralsight.com/guides/pros-and-cons-of-client-side-routing-with-react
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://github.com/reactivestack/cookies/tree/master/packages/universal-cookie
https://leafletjs.com/
https://docs.mapbox.com/mapbox-gl-js/api/
https://reactstrap.github.io/
https://reactstrap.github.io/components
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://nivo.rocks/
https://d3js.org/
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/iso-8601-date-and-time-format.html

18

Table of figures

Figure 1: Code that defines routing in MESOC Toolkit .. 8

Figure 2: The interactive MESOC world map ... 9

Figure 3: Tab-based navigation in MESOC Toolkit ... 10

Figure 4: The MESOC matrix represented in a heatmap ... 12

Figure 5: Rendered FileDropzone component ... 13

