
MESOC Client-side Web Application Architecture in
Node.js, Express.js, and React

Kuharić, Valentin

Undergraduate thesis / Završni rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Rijeka / Sveučilište u Rijeci

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:195:746996

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-13

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of
Informatics and Digital Technologies - INFORI
Repository

https://urn.nsk.hr/urn:nbn:hr:195:746996
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://zir.nsk.hr/islandora/object/infri:776
https://www.unirepository.svkri.uniri.hr/islandora/object/infri:776
https://dabar.srce.hr/islandora/object/infri:776

University of Rijeka - Department of Informatics

Jednopredmetna informatika

Valentin Kuharić

MESOC Client-side Web Application Architecture in
Node.js, Express.js, and React
Bachelor’s thesis

Mentor: prof. dr. sc. Sanda Martinčić - Ipšić

Rijeka, June 2021.

Abstract

This thesis describes the requirements and the thought process of designing the architecture for the
frontend part of the web-based application MESOC Toolkit. It also includes the process required to
set up and deploy the application. The user management process will also be described in the react
application.

Application is written in Javascript using the Node.js runtime environment, enabling us to run
javascript code outside of the browser. The application consists of two parts: The Nodejs +
Expressjs based server and the React-based SPA (single page application). This design pattern
enables us to have the development workflow and power of SPA while having the SEO (search
engine optimization) advantages for the homepage.

Keywords: spa, seo, react, nodejs, expressjs, mesoc toolkit, frontend, architecture, javascript, web

Arhitektura klijenta web aplikacije u Node.js,
Express.js i React-u - primjer MESOC alat

Sažetak

U ovom završnom radu opisan je proces osmišljavanja arhitekture klijentske strane web aplikacije
za MESOC Toolkit, te njen razvoj i objavljivanje. Aplikacija će biti realizirana pomoću Node.js
javascript runtime okruženja, Express.js okvira te React biblioteke za korisničko sučelje (frontend).

Pisani dio završnog rada će uključivati kratko obrazloženje odabira ovih tehnologija i arhitekture te
opis procesa razvoja početne stranice MESOC Toolkita u Node.js + Express.js okruženju, te
razvijanje korisničkog sučelja (frontend-a) React aplikacije. Kod React aplikacije opisat će se
postavljanje općeg prikaza aplikacije te upravljanje korisničkim podacima (registracija, prijava,
stanje prijave, itd.).

Ključne riječi: spa, seo, react, nodejs, expressjs, mesoc toolkit, frontend, arhitektura, javascript,
sučelje, aplikacija, web

Table of Contents
Abstract 1

Sažetak 3

Table of Contents 4

1. Introduction 5

2. Background terminology and basics of web application architectures 6
2.1. Basics of HTTP servers and web applications 6
2.2. Multi-tier architecture 6
2.3. Advantages of multi-tier architectures 7
2.4. Microservices architecture 8
2.5. Single Page Application 8
2.6. Technologies used 8
2.7. Search Engine Optimization 9

3. MESOC Toolkit architecture 10
3.1. The requirements and challenges 10
3.2. The frontend architecture 10
3.3. Advantages of MESOC design 11

4. Homepage application 12
4.1. How handlebars templating works 12
4.2. Comparison of Node.js and ExpressJS 13
4.3. Folder structure 14
4.4. Index.js 15

5. Single page application 16
5.1. Basics of React 16
5.2. Folder structure 17
5.3. App.js 17
5.4. User management 18

6. Deployment process 19
6.1. Deployment 19
6.2. Configuration and environment variables 19

7. Conclusion 21

Appendix 22

References 23

Table of Figures 24

1. Introduction

The client-server model is a distributed application structure that partitions workloads of a service
called servers and service requesters, called clients. Often clients and servers communicate over a
computer network on separate hardware (L. Shklar, R. Rosen, 2003). Clients, therefore, initiate
communication sessions with servers, which await incoming requests. Examples of computer
applications that use the client–server model are email, network printing, and the World Wide Web,
etc...

In the client–server model, the server is often designed to operate as a centralized system that serves
many clients (Raymond Greenlaw, Ellen M. Hepp, 2003). The computing resources must be scaled
appropriately to the expected workload. Many systems like load balancing are employed to enable
scaling to more than one physical machine.

The client-server model is a type of tier-two software application architecture, allowing us to
separate the presentation layer from the rest of the application and enable us to distribute it over the
internet. This approach makes modifications to the application and the data easier, without needing
to update the client’s application.

The MESOC web application architecture employs the client-server model, expanded as a multi-tier
architecture design which makes the developers job easier since different teams depend less on the
progress and changes of other parts of the system.

In this thesis, the frontend architecture in Node.js, Express.js, and React is proposed and elaborated.
The thesis is structured as follows: Chapter 2 covers the basics of web application architecture and
different ways to structure a system, Chapter 3 covers the actual MESOC architecture, the
advantages and disadvantages of the chosen approach, Chapter 4 explains the Express homepage
application, the folder structure, packages and practices used, Chapter 5 covers the React single
page application, how React works, the folder structure, routing, components and user management,
Chapter 6 shows the deployment process of both apps and how to configure them, and Chapter 7
sums up the benefits and the tradeoffs made with this approach, together with the source code and
future possible improvements.

2. Background terminology and basics of web application
architectures

This chapter aims to explain the similarities and differences between terms used in web application
design patterns. Also, some of the most common designs will be mentioned.

2.1. Basics of HTTP servers and web applications

The term web server can refer to hardware or software, or both of them working together.

1. Hardware side - a web server is a computer that stores web server software and all website’s
components. A web server is connected to the Internet and supports physical data
interchange with other devices connected to the web.

2. Software side - a web server is a computer program (one or more parts) that controls how
web users access hosted resources. At a minimum, this is an HTTP server. An HTTP server
is software that understands URLs (Unified Resource Locator) and the HTTP protocol
(Hyper-Text Transfer Protocol) (MDN Web Docs, 2021). An HTTP server takes incoming
requests and responds with the requested resources and it can be accessed via the domain
name it corresponds to.

A static web server consists of a computer machine connected to the internet (hardware) with an
HTTP server (software). We call it "static" because the server sends its hosted files without
modifications to the client. This is the most simple example of a two-tier software application
design for the web as represented in Figure 1.

Figure 1: Diagram showing a basic request-response exchange between a client and a server (HTTP server)

A dynamic web server consists of a static web server paired with some other software, most
commonly an application server and a database. We call it "dynamic" because the application server
updates the hosted files before sending content to your browser via the HTTP server as shown in
Figure 2.

Figure 2: Diagram showing a dynamic web server paired with a database

2.2. Multi-tier architecture

The approach of splitting an application into tiers can be taken further into multi-tier architecture as
shown in Figure 3. In multi-tier architecture, both parts of the client-server model can be further
subdivided to improve the application if it is appropriate (The Open University, 2020).

1. The client - the client-side can be subdivided into more parts, for example; to process some
data received from the server and to present the information

2. The server - the server software might include a database, paired with the web server
program. Usually, when adding the database (located in the data tier) a middleware program
needs to be added (located in the middle tier). Middleware programs are applications that
handle the business logic, and they are located between the server tier and the database tier.
An application that uses middleware to handle data requests between a user and a database
is said to employ a multi-tier architecture. Note that a database can be further subdivided
into two or more, enabling easier maintenance and upgradability.

Figure 3: Diagram of tiers in a multi-tier architecture

2.3. Advantages of multi-tier architectures

As in the two-tier approach, there are advantages to breaking down the application into multiple
tiers (The Open University, 2020). Each tier can be changed more easily since it depends less on
other parts of the system. This again depends on how careful we are to adopt an approach that
ensures undependability from all perspectives. Simply breaking the application into chunks doesn’t

guarantee this; we also need to adopt suitable standards and specify precise and limited interactions
between the tiers. N-tier architecture is for many medium to large systems de-facto a standard
practice. Many more clients besides web browsers are now available that can realistically be
interchanged without prohibitive effort, including databases and web servers.

2.4. Microservices architecture

Microservices - also known as the microservice architecture - is an architectural style that structures
an application as a collection of services that are (Chris Richardson, 2020):

- Highly maintainable and testable,
- Loosely coupled,
- Independently deployable,
- Organized around business capabilities.

The microservice architecture enables the rapid, frequent and reliable delivery of large, complex
applications. It also enables an organization to evolve its technology stack easily over time, since all
parts can be completely replaced by a different codebase, as long as the communication protocol
stays the same.

A microservice is not a layer within a monolithic application. Rather, it is a self-contained piece of
business functionality with clear interfaces and use cases.

2.5. Single Page Application

A SPA (Single-page application) is a web application implementation that loads only a single web
document, and then updates the content of that single document when different content is to be
shown (MDN Web Docs, 2021).

This, therefore, allows users to use websites without loading whole new pages when content is to
change, which can result in performance gains and a more dynamic user experience, with some
tradeoffs such as search engine optimization and complicated navigation (compared to a more
traditional approach). Some of the most popular SPA frameworks are React, Angular and Vue.JS.

Since content gets rendered dynamically on the client-side, search engine crawlers have a hard time
seeing content on a single page, so they can’t index the site properly.

2.6. Technologies used

Node.js is an open-source, cross-platform, back-end JavaScript runtime environment that runs on
the V8 engine and executes JavaScript code outside a web browser (Node.js, 2021). Node.js enables
writing command-line tools and for server-side-scripting - running scripts server-side to produce
dynamic webpage content before the page is sent to the client’s web browser (an example of a
dynamic web server).

When developing web applications in Node.js is de-facto standard framework developers use is
ExpressJS. ExpressJS is a Node.js framework that simplifies writing code for serving routes.
ExpressJS provides a thin layer of fundamental web application features (ExpressJS, 2020).

2.7. Search Engine Optimization

Search engine optimization is a process of improving the ranking of a website on search engines
such as Google, Bing, Yahoo etc.

Search engine crawlers, or more commonly named “bots”, collect information from websites and
store them in an index. Algorithms analyze that data and they rank websites according to some
predetermined factors (MOZ, 2021). Some of the most important factors in search engine rankings
are keywords and HTML semantic elements.

To control the indexing of a website, there are rules one can write in a robots.txt file which crawlers
follow, that specifies which parts of the website they can index, and which they are forbidden to
index. It’s important to note that this doesn’t affect the visibility of these pages.

3. MESOC Toolkit architecture

3.1. The requirements and challenges

MESOC Toolkit has a few requirements:

- Be deployed on the web,
- Have a seamless user experience,
- Have great SEO ranking,
- Work with the MESOC API and the MESOC Repository.

Therefore, the frontend had to be structured and technologies had to be used in such a way to
achieve these requirements. Since the MESOC API and MESOC repository already existed, a
monolithic approach was not an option.

Also, the complexity of the application and its rich feature set meant that a multi-tier architecture
was the right approach.

3.2. The frontend architecture

The frontend architecture of the MESOC Toolkit application consists of two programs: the
ExpressJS server and the single page application written in React as shown in Figure 4.

The ExpressJS server is used for serving HTML files with little complexity, such as the homepage,
the terms and services, and the privacy page. These pages need to have a good SEO ranking, so
serving them via a simple ExpressJS server as static files enables us to do so. All other pages are
handled by the React single page application.

The two applications work in tandem, providing a seamless user experience connected via URL
redirects.

The React SPA interfaces with the MapBox API (Mapbox, 2021) on the “/browse” page. The
MapBox API provides the necessary map tiles to display the map.

Figure 4: Diagram showing the MESOC Toolkit web architecture

3.3. Advantages of MESOC design

The benefit of having two applications is enjoying advantages from both approaches. ExpressJS
serves static files that can be easily indexed on search engines while writing all business logic in a
SPA package enables an easier development process than a more traditional approach, and the client
(user) benefits from a more seamless experience powered by a single page load combined with
better overall performance.

4. Homepage application

The homepage server is written using the Node.js runtime environment, giving us the ability to run
Javascript code outside of the browser. Using it we run an HTTP server. To simplify the
development process and to shorten the development time, the ExpressJS framework is used.
Another important package is Handlebars (express-handlebars, 2020), which is a templating engine
enabling us to reuse HTML templates and import specific data into them based on the client’s
request.

4.1. How handlebars templating works

Written in JavaScript, Handlebars.js is a compiler that takes any HTML and Handlebars expression
and compiles it down to a JavaScript function. This derived JavaScript function takes one
parameter, an object (some data) and returns a string with the HTML and the object properties’
values inserted into the HTML. The result is a string that has the values from the object properties
inserted in the relevant places that gets inserted as HTML onto the page.

The three main parts of Handlebars templating:

1. Handlebars.js expressions - a simple Handlebars expression is written like this, where
content can be a variable or a helper function (with or without parameters):

{{ content }}

2. Data object - The second piece of code in Handlebars templating is the data we want to
display on the page. We pass the data as an object (a regular JavaScript object) to the
Handlebars function. The data object is called the context. This object can be composed of
arrays, strings, numbers, other objects, or a combination of these.

If the data object has an array of objects, we can use Handlebars each helper function to
iterate the array, and the current context is set to each item in the array.

//The customers object has an array of objects that we will pass to
Handlebars: 

var theData = {customers:[{firstName:”Michael”, lastName:”Alexander”,
age:20}, {firstName:”John”, lastName:”Allen”, age:29}]};

3. The compile function - The handlebars compile() function takes the template as a parameter
and it returns a JavaScript function. We then use this compiled function to execute the data
object and return a string with HTML and the interpolated object values. Then we can insert
the string into the HTML page.

var theTemplate = Handlebars.compile (theTemplateScript);

// Returns this: $(document.body).append (theTemplate (theData));

Figure 5

Figure 5: Diagram showing the flow of data and data transformation of Handlebars (simple)

Templating endpoints gives us higher customization and makes potential changes in the future
easier.

4.2. Comparison of Node.js and ExpressJS

ExpressJS simplifies the coding process by providing controller, middleware and routing
functionalities. To compare the two workflows, the same functionality of starting an HTTP server
and creating an endpoint that will return an HTML file with the text “Hello from server” is written
below, in Node and Express (GeeksForGeeks, 2020):

1. Nodejs

const http = require('http');

const server = http.createServer((req, res) => {

res.setHeader('Content-Type', 'text/html');

res.write('<html>');

res.write('<head><title>GeeksforGeeks</title><head>');

res.write('<body><h2>Hello from Node.js server!!</h2></body>');

res.write('</html>');

res.end();

});

server.listen(3000, ()=> {

console.log("Server listening on port 3000")

});

2. ExpressJS

const express = require('express');

const app = express();

app.get('/', (req, res) => {

res.send('<h2>Hello from Express.js server!!</h2>');

});

app.listen(8080, () => {

console.log('server listening on port 8080');

});

4.3. Folder structure

Figure 6: Express application folder and file structure

To maintain code readability and an organized structure, code has been separated into smaller files
and all files have been placed in their respective folders as shown in Figure 6.

Since this project is based on Node.js, the package.json file that is generated by npm (node package
manager) stores the project’s metadata, including name, author, version, dependencies, scripts and
more. The package-lock.json file is automatically generated for any operations where npm modifies
the node_modules folder (where dependency packages get installed) or the package.json file.

The public folder stores all files that can be accessed directly via the URL. It contains folders css,
images and js. For example, if we wanted to access the file file1.js inside the js folder, the URL will
look like this: schema:domainname:port/public/js/file1.js.

The scss folder stores .scss files containing styling instructions for the HTML content. SCSS later
gets compiled down to CSS, which can be found in the public/css folder.

The views folder stores all the .hbs files that handlebars uses to generate the final HTML file that
gets sent to the client. The layouts folder stores handlebars data that is the base for the final content.
Partials folder stores small parts of HTML that can be injected into the final file (navigation bars,
footers etc.) - we can simply include the partial into the final file using one line of code (like this
{{> nabvar}}), as opposed to writing the whole code snippet every time. In the views folder, we
store the .hbs files that are the actual page content (homepage.hbs, termsandconditions.hbs and
privacy.hbs).

README.md is a markdown file that Github uses to display a project’s documentation.

The file .gitignore stores instructions that tell the Git versioning control system MESOC uses which
files to ignore when committing changes.

4.4. Index.js

Index.js is the root file of the project and it starts the application.

At the top of the file we include the necessary packages.

Then we load the configuration settings from the configuration file (will be explained in the
deployment section).

In case the port isn’t specified in the configuration file, we make a constant and set it to 4001.

On line 11 we put the new express application into the app variable.

On line 13 we set the public folder as static, making its content available via the URL.

On line 15 we use the cookie-parser package for parsing the Cookie header.

On line 17 through 20 we set the application to use the handlebars engine and provide the necessary
configuration.

On line 22 we set the view engine setting the value of .hbs.

On line 24 we find a middleware function called getCookieConsent. This function runs before every
endpoint, checks if the mesoc_cca cookie exists and passes it down to the next function.

On lines 34, 45, 53 we find the endpoints of the express application. These functions called route
methods or route functions are attached to the app. All three endpoints use the GET method,
followed by the route path, then the getCookieConsent middleware and then the actual function. All
three functions serve the same purpose - render the HTML content and respond to the request with

the content. Function res.render() takes as parameters the name of the .hbs file that stores the
content and an object in which we provide the values of the variables mentioned in the .hbs files.

Lastly, on line 62 we start the HTTP server with app.listen() function, which takes in as parameters
a port value and an optional callback function, which we use to tell the administrator the server is
successfully running by printing to the console “Server is running on port 4001”.

5. Single page application

The single-page application is written in React (React, 2021) and it handles all the business logic of
the frontend part of the MESOC Toolkit. React is a JavaScript library for building user interfaces
and frontend applications. React itself is connected with state management and rendering that state
to the DOM (Document Object Model), so additional packages and libraries were used to expand
the application’s feature-set.

5.1. Basics of React

The standard application programming interface for HTML documents is the Document Object
Model (DOM), which defines the logical structure of documents and the way a document is
accessed and manipulated. When working on client-side applications the DOM starts getting
complicated and slow, so React implements a virtual DOM that is basically a DOM tree
representation in JavaScript. Unlike manipulating the DOM directly, React elements are
computationally cheap to create, so React manipulates its virtual DOM, and then tries to find the
most efficient way to update the DOM based on the virtual model (GeeksForGeeks, 2021).

React has a few different kinds of components, but for simplicity the React.Component subclass
will be explained.

class ShoppingList extends React.Component {

render() {

return (

<div className="shopping-list">

<h1>Shopping List for {this.props.name}</h1>

Instagram

WhatsApp

Oculus

</div>

);

}

}

// Example usage: <ShoppingList name="Reactname" />

React updates the components (and the DOM) every time the data (application state) changes. Here,
ShoppingList is a React component class, which takes in parameters called props (short for
“properties”) and returns a hierarchy of views to display via the render() method.

The render method returns a description of what should be displayed on the screen. React takes that
description, which is a React element - a lightweight description of what to render - and
manipulates the DOM to match the description. To make the process of describing easier, React
uses the JSX syntax which makes these structures easier to write. JSX combines HTML and
JavaScript into a format easy to write and read.

In the example above we can see a way to use and render a prop to the screen with
{this.props.name} which we provided in the commented example usage with name=”Reactname”.

5.2. Folder structure

Figure 7: React SPA folder and file structure

The package.json and package-lock.json files are generated by the node package manager (npm)
and serve the same purpose as the files in the express app project with the same name. The file
yarn.lock serves the same purpose as the package-lock.json file but gets automatically created by
the create-react-app toolchain. Yarn is a substitute for npm, and they work almost identically. In the
MESOC SPA npm was used.

README.md is a markdown file that Github uses to display a project’s documentation.

The public folder hosts the main index.html file and related files like a favicon, robots.txt etc.

The src folder contains the React App.js file, which is the main root container for all other react
components. In index.js main react component App from App.js gets rendered inside an HTML
DOM element called with id of root.

Other folders are self-explanatory as shown in Figure 7. Folder assets holds images, fonts and
stylings (from a library), components hold react components, images holds main svgs and pngs,
pages holds react components that represent different views e.g. pages, myScss holds more stylings
and testData holds dummy data for testing in JSON format.

5.3. App.js

As previously mentioned, in index.js the React gets rendered into the index.html file inside a div
element with an id of root. But the core of the React application itself is the App.js file - the main
component that mounts all other components.

In MESOC the file App.js, other than being the main component, serves two purposes: holding main
app state data, and having routing functionality for the whole app.

In the beginning of the file we import all libraries and components we need. Then, in the App()
function, we use the hooks API to create variables to store global application data, such as the user
token, is the user verified and more. Using the react-cookie package we can easily read and store
cookie data containing user information and read it into application state and then use it.

const [userToken, setUserToken] = useState(null);

After managing the application state we use the use effect hook to run a piece of code when the
component mounts and at every update. In our case, we use it to read the browser cookie and update
the application accordingly.

In the return() statement return multiple elements inside the React.Fragment. Inside, we check if the
application is ready with the appReady variable and if it is, we return a div inside which we specify
all the routes the application will have. Firstly we specify the root route which always loads the
navbar, and then we list all other routes inside the Switch tags that render only one route that
matches the URL at a time. For each route, we specify the URL suffix for that route and the
component it will load. We also provide specific props to components that need them. To finish, we
render the loading animation until the components load completely.

5.4. User management

The MESOC toolkit application differentiates three user types: unregistered, logged-in but
unverified and logged-in and verified.

A user can interact with the MESOC toolkit even if unregistered. Such a user has access to the
MESOC map and he can analyze the data on a city level.

The user’s account lifecycle starts with creating an account. By providing an email and a password,
a user’s account will be created and he will be able to log in. At that point, his privileges and power
don't change until he verifies his account. Upon registration, an email will be sent to the user’s
email address containing a verification link with a confirmation button. After verifying his account,

he gains access to his personal document repository where he can upload and analyze his own
documents with respect to the MESOC matrix and other MESOC documents.

6. Deployment process

6.1. Deployment

To deploy the frontend part of the MESOC toolkit we need to deploy the two applications
mentioned above - the express server and the react SPA. MESOC toolkit uses the Nginx web server
(Nginx, 2020), although alternatives can be used. Both codebases are stored on github in their
respective repositories.

1. The express server - first step is to clone the git repository to the machine that will host the
application stack. Navigating inside the folder, we run the command in the terminal npm
install to install the necessary dependencies the application needs to work. Then, we need to
run the node (express) application locally on a specific port and keep it running. All that
remains is to route all incoming requests that match a specific subdomain to the app in a
reverse proxy configuration using an Nginx config file.

location / {

root /var/www/mesoc-hp;

proxy_pass http://localhost:4001;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection 'upgrade';

proxy_set_header Host $host;

proxy_cache_bypass $http_upgrade;

}

2. React SPA - first step is to clone the git repository to the machine that will host the
application stack. Navigating inside the folder, we run the command in the terminal npm
install to install the necessary dependencies the application needs to work. Then, we need to
build the application with the command npm run build. This command will generate a build
folder containing a production build of the application. All that remains is to route all
incoming requests for a specific subdomain to the application. React generates static files so
no process needs to run in the background.

location / {

#root /var/www/mesoc-frontend/build;

root /var/www/mesoc-frontend/build;

try_files $uri $uri/ /index.html =404;

}

6.2. Configuration and environment variables

Both applications require minor configuration to work. The express app needs a PORT and a
WEBAPP variable, which points to the subdomain the SPA is located, and the SPA needs
REACT_APP_MAPBOX_STYLE and REACT_APP_MAPBOX_ACCESS_TOKEN, which point to
the mapbox map link and the user token. Applications use the dotenv package (dotenv, 2020) for
easier configuration.

Using dotenv, we create a new file with extension .env that isn’t a part of the codebase. This file
will contain application secrets and configuration data, such as database logins, API tokens etc.
These secrets are written in a key-value format. An example is shown below.

SECRET_VARAIBLE=secretValue

To use dotenv in the express app we use it by including by importing the package and using the
dotenv.config() function that takes as a parameter the path to the .env file, while in the SPA dotenv
gets configured automatically by the create-react-app toolchain.

When it comes to updating the applications when changing the .env files the express app needs to be
restarted and the SPA needs to be rebuilt since it builds static files.

As previously mentioned the react SPA uses mapbox API to receive map tiles to display on the
MESOC map. To get the necessary mapbox user token and map URL an administrator needs to
register on the Mapbox web application, duplicate the MESOC map from the public link and fill the
.env file with his user token and map link.

7. Conclusion

In this thesis we have laid out the basics of web applications and JavaScript web technologies, we
have discussed the MESOC toolkit frontend architecture, its shortcomings and advantages, and how
the applications work. We have shown how to configure the application stack and deploy it.

Much more can be said about the technologies and design patterns used. Considering the
requirements of the MESOC toolkit, exploring different approaches and principles would be
worthwhile. Also, there are numerous situations where the code can be written in a simpler form,
making maintenance and further development easier. One functionality this project currently lacks
is unit testing. Unit testing wasn’t introduced to the MESOC toolkit due to development deadlines,
but this is something every project needs, even web applications of this scale. In that case, one
would use packages such as Mocha (Mocha, 2021) to write unit tests and create an easy npm
command to run them inside the package.json file.

At this point, the application stack is production-ready and can be deployed and used commercially,
even though it lacks polish in some areas. Future work includes the polishing mentioned before and
improving the user experience in the form of feedback forms. The document pipeline and data
presentation is still in their early stage, so further testing is required in the form of different
presentations of data.

Appendix

Appendix includes a CD-ROM containing a copy of the web application featured in the thesis and
the accompanying deployment and configuration instructions.

References

L. Shklar, R. Rosen (2003). Web Application Architecture: Principles, protocols and practices.
Retrieved from
http://bedford-computing.co.uk/learning/wp-content/uploads/2016/07/Web-Application-Architectur
e-Principles-Protocols-and-Practices.pdf

Raymond Greenlaw, Ellen M. Hepp (2003). Encyclopedia of Information Systems. Retrieved from
https://www.sciencedirect.com/topics/computer-science/client-server-model

The Open University, (2020). An introduction to web applications architecture. Retrieved from

https://www.open.edu/openlearn/science-maths-technology/introduction-web-applications-architect
ure/content-section-1.2

IBM Cloud Learn hub. Three-Tier Architecture. Retrieved from

https://www.ibm.com/cloud/learn/three-tier-architecture#:~:text=Three%2Dtier%20architecture%2
0is%20a,associated%20with%20the%20application%20is

MDN Web Docs, (2021). What is a web server? Retrieved from

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server

MOZ, (2021). How search engines work: crawling, indexing and ranking. Retrieved from

https://moz.com/beginners-guide-to-seo/how-search-engines-operate

Chris Richardson, (2020). Microservice architecture. Retrieved from

https://microservices.io/

MDN Web Docs, (2021). SPA (Single-page application). Retrieved from

https://developer.mozilla.org/en-US/docs/Glossary/SPA

GeeksForGeeks, (2021). React.js (Introduction and Working). Retrieved from

https://www.geeksforgeeks.org/react-js-introduction-working/

React, (2021). Tutorial: Intro to React. Retrieved from

https://reactjs.org/tutorial/tutorial.html

CreateReactApp toolkit documentation. Retrieved from

https://create-react-app.dev/

Mocha JavaScript testing framework, (2021). Retrieved from

https://mochajs.org/

GeeksForGeeks, (2020). Node.js vs Express.js. Retrieved from

http://bedford-computing.co.uk/learning/wp-content/uploads/2016/07/Web-Application-Architecture-Principles-Protocols-and-Practices.pdf
http://bedford-computing.co.uk/learning/wp-content/uploads/2016/07/Web-Application-Architecture-Principles-Protocols-and-Practices.pdf
https://www.sciencedirect.com/topics/computer-science/client-server-model
https://www.open.edu/openlearn/science-maths-technology/introduction-web-applications-architecture/content-section-1.2
https://www.open.edu/openlearn/science-maths-technology/introduction-web-applications-architecture/content-section-1.2
https://www.open.edu/openlearn/science-maths-technology/introduction-web-applications-architecture/content-section-1.2
https://www.ibm.com/cloud/learn/three-tier-architecture#:~:text=Three%2Dtier%20architecture%20is%20a,associated%20with%20the%20application%20is
https://www.ibm.com/cloud/learn/three-tier-architecture#:~:text=Three%2Dtier%20architecture%20is%20a,associated%20with%20the%20application%20is
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server
https://moz.com/beginners-guide-to-seo/how-search-engines-operate
https://microservices.io/
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://www.geeksforgeeks.org/react-js-introduction-working/
https://reactjs.org/tutorial/tutorial.html
https://create-react-app.dev/docs
https://mochajs.org/

https://www.geeksforgeeks.org/node-js-vs-express-js/

Node.js (Version 14.17.1) (2021). Retrieved from https://nodejs.dev/

ExpressJS (Version 4.17.1) (2020). Retrieved from https://www.npmjs.com/package/express

React (Version 17.0.1) (2020). Retrieved from https://reactjs.org/

express-handlebars (Version 5.2.0) (2020). Retrieved from
https://www.npmjs.com/package/express-handlebars

dotenv (Version 8.2.0) (2020) Retrieved from https://www.npmjs.com/package/dotenv

Nginx (Version 1.18.0) (2020). Retrieved from https://www.nginx.com/

Mapbox, (2021). Retrieved from https://docs.mapbox.com/

https://www.geeksforgeeks.org/node-js-vs-express-js/
https://nodejs.dev/
https://www.npmjs.com/package/express
https://reactjs.org/
https://www.npmjs.com/package/express-handlebars
https://www.npmjs.com/package/dotenv
https://www.nginx.com/
https://docs.mapbox.com/
https://www.nginx.com/

Table of Figures

Figure 1: Diagram showing a basic request-response exchange between a client and a server
(HTTP server) 7

Figure 2: Diagram showing a dynamic web server paired with a database 7

Figure 3: Diagram of tiers in a multi-tier architecture 8

Figure 4: Diagram showing the MESOC Toolkit web architecture 11

Figure 5: Diagram showing the flow of data and data transformation of Handlebars

(simple) 14

Figure 6: Express application folder and file structure 15

Figure 7: React SPA folder and file structure 18

