Title Sustav za dinamičko generiranje objekata učenja kao potpora individualno personaliziranoj nastavi
Title (english) The system for dynamic generation of learning objects as support for individual personalized teaching
Author Maja Gligora Marković
Mentor Božidar Kovačić (mentor)
Mentor Alen Jakupović (komentor)
Committee member Marina Ivašić-Kos (predsjednik povjerenstva)
Committee member Mile Pavlić (član povjerenstva)
Committee member Nikola Kadoić (član povjerenstva)
Granter University of Rijeka (Faculty of Informatics and Digital Technologies) Rijeka
Defense date and country 2020-07-22, Croatia
Scientific / art field, discipline and subdiscipline SOCIAL SCIENCES Information and Communication Sciences
Universal decimal classification (UDC ) 004 - Computer science and technology. Computing. Data processing
Abstract U ovom radu opisan je sustav za dinamičko generiranje objekata učenja kao potpora individualno personaliziranoj nastavi, koji predstavlja podvrstu inteligentnih i prilagodljivih sustava za e-učenje. Poželjno je da sustavi za e-učenje koji za cilj imaju preuzimanje uloge učitelja budu prilagodljivi svakom pojedincu prema odabranim kriterijima, stoga u samom naslovu i jest korišten pojam individualno personalizirana nastava gdje je personalizacija kao viši rodni pojam, a individualizacija kao niži, čime je stavljen naglasak na nastavu primijenjenu potrebama jedne osobe, odnosno nastavu koja uvažava individualne razlike učenika. Ovakav zahtjev za sustav e-učenja kojem je svrha potpora individualno personaliziranoj nastavi postavlja čitav niz dodatnih zahtjeva u njegovoj izgradnji pri čemu se često koriste neke od metoda odlučivanja kod dodjele objekata učenja korisniku prema odabranim kriterijima. Dosadašnja istraživanja govore da se za metodu odlučivanja najčešće koriste pravila odlučivanja koje autori sustava sami definiraju, a primarni je kriterij prilagodbe u sustavima usvojenost znanja. Za potrebe ovog rada provedeno je istraživanje o izboru kriterija prilagodbe u nastavnom procesu u klasičnoj nastavi prilikom obrade novoga gradiva. Na temelju dobivenih rezultata primjenom višekriterijske metode odlučivanja analitičkog hijerarhijskog procesa (AHP) donesena je odluka o izboru kriterija prilagodbe koji su primijenjeni u sustavu, i to kognitivni stil (strategija pristupa) učenja, stil učenja (vizualni, auditivni i kinestetički) te razina ciljeva učenja prema Bloomovoj taksonomiji (6 razina kognitivnog područja). Kako je glavna svrha primjene ovakvih sustava što učinkovitije učenje, odnosno stjecanje znanja, potrebno je i odgovarajućom metodom procijeniti kriterije prilagodbe u objektima učenja koji se koriste u sustavu. Razvijena je metoda vrednovanja objekata učenja prema odabranim kriterijima prilagodbe, a istraživanje je provedeno primjenom Delphi metode, čiji je konačan rezultat instrument za vrednovanje objekata učenja. Izgrađeni sustav za dinamičko generiranje objekata učenja kao potpora individualno personaliziranoj nastavi sastoji se od nekoliko osnovnih modula poput korisničkog sučelja, inicijalnog modula studenta, modula studenta, modula za evaluaciju, domene kolegija, modula za pravila odlučivanja te modula za generiranje sadržaja (objekata učenja). U svrhu individualno personaliziranog algoritma izbora objekata učenja, prema definiranim kriterijima prilagodbe, korištena je višekriterijska metoda odlučivanja analitički mrežni proces (ANP) i metoda za strukturiranje problema odlučivanja (DEMATEL). Provedeno je istraživanje o učinkovitosti sustava među studentima Sveučilišta u Rijeci, Sveučilišta u Splitu i Veleučilišta u Rijeci kojim je utvrđena bolja usvojenost znanja kod onih studenata koji su koristili sustav s algoritmom za dinamičko dodjeljivanje objekata učenja od onih koji to nisu.
Abstract (english) This paper describes a system for the dynamic generation of learning objects in support of individually personalized teaching, which represents intelligent and adaptable e-learning systems. E-learning systems that aim to take on the role of teachers are desirable to be adaptable to each individual according to selected criteria, so in the title itself the term individually personalized teaching is used where personalization is a higher gender term and individualization as a lower one, teaching applied to the needs of one person, ie teaching that respects the individual differences of students. This requirement for the e-learning system, which is intended to support individually personalized teaching, places a number of additional requirements in its construction, often using some of the decision-making methods in assigning learning objects to the user according to selected criteria. Previous research shows that the decision-making method most often used is the decision-making rules that the authors of the system themselves define, and the primary criterion for adjustment in systems is the acquisition of knowledge. For the purposes of this thesis, a study was conducted on the choice of adjustment criteria in the teaching process in classical teaching. Based on the obtained results using the multicriteria method of decision-making of the analytical hierarchical process (AHP), a decision was made on the choice of adaptation criteria applied in the system: cognitive style (approach strategy), learning style (visual, auditory and kinesthetic) and level of learning objectives Bloom's taxonomy (6 levels). As the main purpose of the application of such systems is to learn as efficiently as possible, to acquire knowledge, it is necessary to assess the criteria of adaptation in the learning objects used in the system by an appropriate method. A method for assessing learning objects according to selected adaptation criteria was developed, and research was conducted using the Delphi method, the final result of which is an instrument for assessing learning objects. The built system for dynamic generation of learning objects to support individually personalized teaching consists of several basic modules such as user interface, initial student module, student module, evaluation module, course domain, decision rules module and content generation module (learning objects). For the purpose of an individually personalized algorithm for selecting learning objects according to defined adaptation criteria, a multi-criteria decision-making method, analytical network process (ANP) and a method for structuring decision-making problems (DEMATEL) were used. A study was conducted on the effectiveness of the system among students of the University of Rijeka, University of Split and Polytechnic of Rijeka, which found better knowledge acquisition in those students who used the system with an algorithm for dynamic allocation of learning objects than those who did not.
Keywords
e-učenje
prilagodljivi sustavi za e-učenje
višekriterijsko odlučivanje
inteligentni sustavi za e-učenje
objekti učenja
Keywords (english)
e-learning
adaptive e-learning systems
multi-criteria decision making
intelligent e-learning systems
learning object
Language croatian
URN:NBN urn:nbn:hr:195:083938
Promotion 2021
Study programme Title: Informatics Study programme type: university Study level: postgraduate Academic / professional title: doktor znanosti iz znanstvenog područja Društvene znanosti, polja Informacijske i komunikacijske znanosti. (doktor znanosti iz znanstvenog područja Društvene znanosti, polja Informacijske i komunikacijske znanosti.)
Type of resource Text
File origin Born digital
Access conditions Access restricted to students and staff of home institution
Terms of use
Created on 2021-04-26 08:10:31