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Abstract

This master’s thesis addresses the challenge of clickbait detection in digi-
tal media through the application of machine learning and deep learning tech-
niques. Clickbait is a type of web content advertisement that aims to attract
users’ attention and encourage them to click on related links. Media scholars
have expressed concerns regarding clickbait’s contribution to misinformation,
yet the clickbait industry is still growing quickly. The objective of this the-
sis is to classify clickbait titles using different models and text representation
techniques. Multiple datasets, including the dataset collected by Chakraborty
et al. and the Webis-Clickbait-17 dataset, are utilized in the research. Fur-
thermore, these two datasets were merged, and classification was also done on
that merged dataset. Classification models such as the naive Bayes classifier,
support vector machines, random forest, linear perceptron, LSTM, and GRU
are employed. Three text representation techniques, TF-IDF, word2vec, and
FastText, are used and compared. The findings demonstrate that FastText
representation yields the highest overall performance. Regarding the classifi-
cation performance, support vector machines achieve the best results, with an
F1 score of 0.8797 on the merged dataset. The study also explores title-text
similarity using the neural Deep Semantic Similarity Model, confirming that
non-clickbait titles better represent the content. This research contributes in-
sights into clickbait classification models, aiming to enhance user experience

and combat misinformation.

Keywords: clickbait, machine learning, deep learning, classification mod-

els, text representation, title-text similarity, misinformation.



SaZetak

Otkrivanje “clickbaitova” pomoéu metoda strojnog i dubokog ucenja

Tema diplomskog rada je otkrivanje “clickbaitova” (mamilica) u digitalnim
medijima koriste¢i tehnike strojnog i dubokog ucenja. “Clickbait” je vrsta
oglasavanja web sadrzaja kojoj je cilj privuéi pozornost Citatelja i potaknuti
ih da kliknu na popratne poveznice. Industrija “clickbaitova” i dalje ubrzano
raste bez obzira na zabrinutost vezanu uz Sirenje dezinformacija koju su iskazali
znanstvenici. Cilj rada je klasificirati “clickbait” naslove koristeéi razlic¢ite mo-
dele i reprezentacije teksta. Vise skupova podataka je koriSteno u istraziva-
nju, ukljucujuéi skup podataka koji su prikupili Chakraborty et al. i skup
podataka Webis-Clickbait-17. Nadalje, ova dva skupa podataka spojena su i
klasifikacija je takoder uradena na takvom skupu podataka. Koriste se modeli
kao Sto su naivni Bayesov klasifikator, strojevi s potpornim vektorima, slu-
Cajna Suma, linearni perceptron, ¢elija s dugorotnom memorijom (LSTM) i
upravljacka rekurentna jedinica (GRU). KoriStene su i usporedene tri tehnike
reprezentacije teksta, TF-IDF, word2vec i FastText. Rezultati pokazuju da
FastText reprezentacija ima najbolje performanse. Sto se tice klasifikacijskih
performansi, strojevi s potpornim vektorima postizu najbolje rezultate klasi-
fikacije, s Fl-rezultatom od 0,8797 na spojenom skupu podataka. Studija
takoder istrazuje slicnost naslova i tekstova Clanaka i pokazalo se da naslovi
koji nisu “clickbaitovi” bolje predstavljaju sadrzaj. Ovo istraZzivanje pruZza uvid
u modele klasifikacije “clickbaitova”, a s ciljem poboljsanja korisnickog iskustva

i borbe protiv dezinformacija.

Kljuéne rijeci: ‘“clickbait”, strojno ucenje, duboko ucenje, klasifikacijski

modeli, reprezentacija teksta, slinost naslova i teskta, dezinformacije.
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1 Introduction

Today, digital media has displaced print media, and there are more news sites than
ever that offer a wide range of information [1]. Various techniques are being utilized
in order to increase readability — some positive, some negative. One of them is click-
baiting. The term clickbait describes a particular type of web content advertisement
created to persuade users to click a related link [2]. According to the Oxford Learner’s

Dictionaries!, clickbait is described as:

“Material put on the internet in order to attract attention and encourage

visitors to click on a link to a particular web page.”?

Advertisers that write clickbait titles use sensationalist or misleading tactics. A
typical example of a clickbait title would be: “You Won’t Believe What This Celebrity
Did on Live TV!”. We do not know who that celebrity is and what he/she has done
on live TV, and thus, it creates some kind of curiosity and intrigue inside us. As G.
Loewenstein explained in his article about the information gap theory of curiosity [3],
there is a gap between what people know and what they want to know. Namely,
curiosity generally takes two main steps: first, a situation reveals a painful knowledge
gap (the headline), and then we feel the urge to fill this gap and ease that pain (the
click). Despite the fact that media analysts and commentators continuously depict
clickbait content negatively, the market for this type of content has been rapidly
expanding and is now reaching an increasing number of individuals worldwide [4].
The primary purpose of a clickbait title is profit, as many pages earn money from
clicks — how many times a particular article or post is clicked [5]. Additionally, news
websites display adverts and make money from them every time a user clicks and
opens an item [6].

Research on clickbait detection has been ongoing for the past ten years. Potthast
et al. [2] constructed one of the first clickbait datasets (a corpus of Twitter posts).
They conducted research and created a clickbait classification model based on numer-
ous characteristics of clickbait headlines. In his work [6], A. Agrawal employed deep
learning techniques and distinguished clickbait headlines with a significant degree of
accuracy. Anand et al. |7] used neural networks to detect clickbait. Their F1 score
was 0.98 using bidirectional recurrent neural networks. Kumar et al. [8] developed
a multi-strategy approach using neural networks to classify clickbait titles. Their
research was conducted on the Webis-Clickbait-17 dataset and achieved F1 scores

ranging from 0.39 to 0.65.

'https://www.oxfordlearnersdictionaries.com/definition/english/clickbait
2The definition is prone to slight changes over time.



Fighting clickbait is essential because news sites are making sly and cunning finan-
cial gains from it. There are existing initiatives to stop clickbait and alert people when
it could be there. In particular, Chakraborty et al. [5] created the ‘Stop Clickbait’
browser plugin, which alerts users to the presence of clickbait on various webpages.

This master thesis aims to employ different machine learning and deep learn-
ing methods for classifying clickbait titles. Machine learning methods include the
naive Bayes classifier, support vector machines, random forest and linear perceptron.
Deep learning methods used in this work consist of two neural network architectures:
LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit). The clas-
sification task will be performed on three datasets, and their performances will be
compared using three different text representation techniques — TF-IDF, word2vec
and FastText. Additionally, title-text similarity will be examined using DSSM (Deep
Semantic Similarity Model) to determine whether clickbait titles differ more from
their content than non-clickbait titles. All the work is done on the Google Colab
platform? in Python 3 programming language. Google also provides a GPU for hard-
ware acceleration, and NVIDIA T4 Tensor Core GPU was used for the training of
neural networks, which is provided free of charge. The datasets used in this work are
saved in CSV (comma-separated values) files and were loaded into the scripts using
the pandas* library.

In Section 2, the datasets used in this work are described. Next, Section 3 elab-
orates on machine learning and deep learning is covered in Section 4. Title-text
similarity is examined in Section 5. In the last Section, some concluding remarks are

provided.

3https://colab.research.google.com/
‘https://pandas.pydata.org/



2 Datasets

The first dataset used in this work is the dataset collected and prepared by Cha-
kraborty et al. [5]. This dataset initially consisted of 7,500 clickbait and 7,500 non-
clickbait titles in English language. The non-clickbait titles were extracted from
Wikinews, where authors must follow strict rules for writing an article. Due to that,
it is considered to be a good source for non-clickbait titles. The clickbait titles were
collected from the following portals: BuzzFeed, Upworthy, ViralNova, Scoopwhoop
and ViralStories. Later, the dataset was expanded to include 16,001 non-clickbait
titles and 15,999 clickbait titles. The dataset is balanced because 50% of the in-
stances belong to one class (clickbait) and 50% belong to another (non-clickbait). In
order to label the dataset, six volunteers were enlisted, with at least three of them
labeling each item. With a Fleiss’ x° of 0.79, a fair level of inter-annotator agree-
ment was achieved. They performed an analysis and a comparison between clickbait
and non-clickbait titles and showed that the average length of non-clickbait titles is
seven words and the average length of clickbait titles is ten words. This is due to
the fact that clickbait titles tend to have more connecting function words and stop
words. Also, the average word length is shorter in the clickbait titles because of the
aforementioned larger amount of stop words.

The second dataset is the Webis Clickbait Corpus 2017 (Webis-Clickbait-17) [10],
created for a clickbait challenge in 2017 [11]. Potthast et al. crawled 459,541 English
tweets from 27 major US news publishers® posted between December 2016 and April
2017. The objective was to draw at least 30,000 but no more than 40,000 tweets due
to financial constraints. Consequently, they ended up with a total of 38,517 tweets.
Alongside the titles, the dataset includes other metadata, the most interesting of
which are the entire texts of the articles. The dataset was annotated by five annotators
using Amazon Mechanical Turk”. This dataset is a trickier one since it has many
more cases where clickbaitiness is debatable. Also, it is not balanced (75.92% of the
instances are non-clickbait). That will result in poorer performance of our classifying
tasks.

®As defined in [9], “Fleiss’ & is a measure of inter-rater agreement used to determine the level of
agreement between two or more raters (also known as ‘judges’ or ‘observers’) when the method of

assessment, known as the response variable, is measured on a categorical scale.”

S ABC News, BBC World, Billboard, Bleacher Report, Breitbart News, Business, Business Insider,
BuzzFeed, CBS News, CNN, Complex, ESPN, Forbes, Fox News, Guardian, HuffPost, Independent,
Indiatimes, MailOnline, Mashable, NBC News, NY Times, Telegraph, USA Today, Washington Post,

WSJ and Yahoo.
"https://www.mturk.com/



Lastly, for the purpose of this work, these two datasets were merged in a way that
the maximum number of titles are included while preserving the balance, so 18,552
instances from the second dataset were added to the first one. That resulted in a
dataset with 50,550 instances that has a balanced distribution of 25,275 non-clickbait
titles and 25,275 clickbait titles. A sample of the dataset can be seen in Figure 1.

title clickbait

0 Should | Get Bings 1
1 Which TV Female Friend Group Do You Belong In 1
2 The New "Star Wars: The Force Awakens" Trailer... 1
3 This Vine Of New York On "Celebrity Big Brothe... 1
4 A Couple Did A Stunning Photo Shoot With Their... 1
50545 5 Dead, 7 Injured After Tornadoes in Alabama a... 0
50546 Seattle Seahawks Richard Sherman Says 'Karma' ... 0
50547 Older Viewers and Conservatives Are Watching L... 0
50548 A Superior Chicken Soup 1
50549 Panama Papers: Europol links 3,500 names to su... 0

50550 rows x 2 columns

Figure 1: Sample of the merged dataset: title ID, title content, class
(1 - clickbait, 0 — non clickbait).



3 Machine Learning

Machine learning is a subfield of artificial intelligence and a branch of computer science
that tries to enable computers to “learn” without being explicitly programmed. [12].
Machine learning is employed to learn models, using algorithms, capable to analyse
and draw inferences from patterns in data. Data is the foundation of any machine
learning task, including images, text, numbers, time-series, audio, sales records, and
more. The general rule about data amount is — the more data, the merrier. Supervised
learning and unsupervised learning are two categories of machine learning algorithms.
In supervised learning, output or target values are known, and the task is to predict
these target values in the test set where teaching is done on the training set. On
the other hand, unsupervised learning tries to discover structure and regularities
in the data [13]. Regarding that, it is crucial to choose the appropriate machine
learning algorithm for a particular task. Since the data in this work has been labeled,
supervised learning is employed. There are two labels: 0 for “non-clickbait” and 1 for
“clickbait”.

In this work, three text representation methods are used for the training of ma-
chine learning models: TF-IDF [14], word2vec |15], and FastText [16] representation.
With each of these representations, the following machine learning methods were
trained to classify clickbait titles: the naive Bayes classifier (NB)®, SVM (Support
Vector Machine)?, random forest (RF)!® and linear perceptron''. The NB, SVM and
RF methods are described in [17] and linear perceptron is described in [18]. All
machine learning methods implementations used in this thesis are from the scikit-
learn'? library for Python. For the naive Bayes classifier, Gaussian NB classifier was
used (except for the TF-IDF representation where multinomial NB classifier was used
because TF-IDF violates the underlying assumption of the Gaussian distribution).

All machine learning methods: NB, SVM, RF and Perceptron are trained on three

datasets:
e The first dataset (collected by Chakraborty et al. with 32,000 instances),
e The second dataset (Webis-Clickbait-17 with 38,517 instances),

e The third dataset (merged dataset with 50,550 instances).

8https://scikit-learn.org/stable/modules/naive_bayes.html

Yhttps://scikit-learn.org/stable/modules/svm.html
Onttps://scikit-learn.org/stable/modules/ensemble . html#forest
"https://scikit-learn.org/stable/modules/linear_model.html#perceptron
2https://scikit-learn.org/stable/index.html



For each method, a split of 70:30 ratio is used. Accuracy, precision, recall and
F1 score are used as metrics for evaluating the models [14]. A brief explanation
of evaluation metrics is given below, but before that, the abbreviations used in the

equations are established:
e TP is true positive (a test result that the model correctly classified as clickbait),

e TN is true negative (a test result that the model correctly classified as non-
clickbait),

e FP is false positive (a test result that the model wrongly classified as clickbait),

e FN is false negative (a test result that the model wrongly classified as non-
clickbait).

Accuracy: total correctly classified examples divided by the total number of

classified examples. Formula:

TP+TN

: 1
TP+TN+ FP+ FN (1)

accuracy =

Precision: the actual correct prediction divided by the total prediction made by

the model. Formula:
TP

_ 2
TP+ FP )
Recall: the number of true positives divided by the total number of true positives

precision =

and false negatives. Formula:

P (3)
reca _TP+FN

F1 score: a weighted average of precision (2) and recall (3). Formula:

precision - recall

f, =2 (4)

precision + recall

A usual way of representing TP, TN, FP and FN is a confusion matrix [19]. In a

binary classification task, the matrix has two rows and two columns (Figure 2).
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Figure 2: Confusion matrix on a binary classification task [20]. Rows represent the

predicted class and columns represent the true class.

In the following sections, three text representations will be explained and for each

one of them, three performance tables (for every dataset) will be displayed.

3.1 TF-IDF Representation

An important aspect of NLP (Natural Language Processing) is transforming the words
into a numerical representation (a vector). Vectors in low-dimensional continuous
space are called word embeddings [21]. The vectors try to capture various charac-
teristics of that word with regard to the overall text. As described in [14] and [22],
TF-IDF (Term Frequency - Inverse Document Frequency) is a text representation that
reflects how important a word is to a document in a collection or corpus. TF-IDF is
the product of tf (term frequency) and idf (inverse document frequency).

Term frequency, tf(t, d), is the relative frequency of term ¢ within document d:

tf(t, d) = Jud (5)

N Zt'ed ft’,d7

where f; 4 is the raw count of a term in a document. Raw term frequency has one
drawback — all terms are considered equally important, but in practice, this is not

the case.



Document frequency, df(¢, D), is the number of documents in the collection
that contain the term ¢. Inverse document frequency, idf(¢, D), tries to reduce
the tf weight of a term by a factor that grows with its collection frequency. In-
verse document frequency is basically a measure of how much information the word

provides:

N
{dcD tcd) (6)

where N is the total number of documents in the corpus with the size |D|. |{d €

idf(t, D) = log

D : t € d}| is the number of documents where the term t appears. Lastly, TF-IDF,
tfidf(¢,d, D), is the product of tf(¢,d) (5) and idf(t, D) (6):

tidf(¢, d, D) = tf(t, d) - idf(t, D). (7)

For representing the texts with TF-IDF, TF-IDF vectorizer from the scikit-learn'3
library is used. Four algorithms were tested on three datasets using TF-IDF repre-
sentation. Tables 1, 2 and 3 show performances on three used datasets. Also, time
needed to perform the algorithm is also shown in the tables'*. Bold values represent
the highest value of the metric. Table 1 displays the performance on the first (Cha-
kraborty et al.) dataset. The naive Bayes classifier showed the best results as it tops

the performance in three out of four observed metrics.

Table 1: TF-IDF performance on the Chakraborty et al. dataset.

Metric NB SVM RF Perceptron
Accuracy | 0.9569  0.9549 0.9015 0.9235
Precision | 0.9498 0.9681 0.8598 0.9212
Recall 0.9649 0.9407 0.9593 0.9263
F1 score | 0.9573 0.9542 0.9068 0.9237
Time (s) 0.05 82.41  20.20 0.03

The performance was degraded on the second dataset (Webis-Clickbait-17). Pre-

cisely, recall exhibit the highest decline. This happened because the dataset is un-

balanced (way less clickbait than non-clickbait titles) and has more “hard titles”'.

Bhttps://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

text.TfidfVectorizer.html
4The algorithms were executed five times with the same parameters. To measure the time

they take, timeit (https://docs.python.org/3/library/timeit.html) library is utilized and the

average time is displayed in the tables.
5The term “hard titles” refers to titles that possess a questionable level of clickbaitiness.



Overall, accuracy and precision are somewhat satisfactory as they are around 70%.

It is hard to say which model is the best. Performance can be seen in Table 2.

Table 2: TF-IDF performance on the Webis-Clickbait-17 dataset.

Metric NB SVM RF  Perceptron
Accuracy | 0.7801 0.7896  0.7759 0.7038
Precision | 0.7366 0.7506 0.5793 0.4084
Recall 0.1731 0.2242  0.3438 0.4397
F1 score | 0.2804 0.3453 0.4315 0.4234
Time (s) 0.04 349.48 74.28 0.10

TF-IDF with the third (merged) dataset showed results that lie in between the
first two and they are pretty good overall. SVM achieved the best results while taking
by far the most time to complete. Table 3 illustrates this.

Table 3: TF-IDF performance on the merged dataset.

Metric NB SVM RF Perceptron
Accuracy | 0.8404 0.8432 0.8106 0.7824
Precision | 0.8481 0.8609 0.7945 0.7725
Recall 0.8312 0.8206 0.8404 0.8036
F1 score | 0.8396 0.8403 0.8168 0.7877
Time (s) 0.23  319.86 92.09 0.10

3.2 Word2vec Representation

Word2vec is an effective way of representing words because it can make strong esti-
mates of words’ meanings based on their occurrences in the text [15]. It follows the
NNLM (Neural Net Language Model) architecture proposed by Bengio et al. [23].
Mikolov et al. [15] introduced two new model architectures for learning distributed
representations of words with the goal of minimizing computational complexity as
most of the complexity is caused by the non-linear hidden layer in the NNLM. The
first architecture is a bag-of-words (BOW) model where the hidden layer is removed
and the projection layer is shared for all the words. In essence, all words get projected
into the same position. Furthermore, they used a continuous distributed representa-
tion of the context so the architecture they proposed is called continuous bag-of-words
(CBOW) [15] (Figure 3a).



The second architecture, called skip-gram, is similar to CBOW, but it tries to
maximize the classification of a word based on another word in the same sentence.
Each current word is used as an input to a log-linear classifier with a continuous
projection layer. The goal is to predict words within a certain range before and after
the current word (Figure 3b). In other words, CBOW is an architecture that predicts
a target word from a list of context words, whereas the skip-gram, the opposite of

the CBOW algorithm, tries to predict the context word for a given target word [15].

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2)

w(t-2)
w(t-1) % w(t-1)
SUM
L W wy| ——
wit+1) / x wt+1)
w(t+2) w(t+2)
cBOwW Skip-gram
(a) CBOW architecture (b) Skip-gram architecture

Figure 3: Architectures behind word2vec [15].

Figure 4 displays an example of vectors obtained using the word2vec model and
their semantic and syntactic relationship. It can be seen that word pairs queen—king
and woman—man are semantically close, while word pairs big—biggest and small-

smallest are syntactically close.

:'Woman .I , Biggest‘
T Man -1 E4
...... .

Smallest

Y
Y

Semantic Syntactic
Relationship Relationship

Figure 4: Trained word2vec vectors with semantic and syntactic relationship [24].
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Implementation of word2vec representation is done using the gensim!® library.
Using word2vec representation on the Chakraborty et al. dataset showed good per-
formance which can be seen in Table 4. As the classifier, random forest achieved the
best performance since three of the four best metrics were achieved with it. However,

random forest takes the longest time to complete.

Table 4: Word2vec performance on the Chakraborty et al. dataset.

Metric NB SVM RF  Perceptron
Accuracy | 0.8856 0.9208 0.9332 0.9277
Precision | 0.9229 0.9351  0.9362 0.9487
Recall 0.8415 0.9042 0.9297 0.9042
F1 score | 0.8803 0.9194 0.9329 0.9259
Time (s) 0.06 6.92 27.16 0.22

Word2vec performed quite poorly on the Webis-Clickbait-17 dataset. The best
method is the naive Bayes since it has the highest F1 score among all tested methods
and is the fastest one. In this example, linear perceptron failed quite a bit, as can be
seen in the reported F1 score of only 0.0550. The performance of four classifiers with

word2vec representation on the Webis-Clickbait-17 dataset is reported in Table 5.

Table 5: Word2vec performance on the Webis-Clickbait-17 dataset.

Metric NB SVM RF Perceptron
Accuracy | 0.7212 0.7820 0.7893 0.7561
Precision | 0.4497 0.7401 0.6423 0.6667
Recall 0.5659 0.1833  0.3347 0.0287
F1 score | 0.5012 0.2938 0.4401 0.0550
Time (s) | 0.06  86.41  46.58 0.12

While using the merged dataset, performance fell midway between the first two
datasets. The random forest classifier was the best again and achieved the highest

values in three of the four metrics. The performance can be seen in Table 6.

https://radimrehurek.com/gensim/models/word2vec.html
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Table 6: Word2vec performance on the merged dataset.

Metric NB SVM RF  Perceptron
Accuracy | 0.8062 0.8616 0.8690 0.8059
Precision | 0.8955 0.9009  0.8933 0.9427
Recall 0.6954 0.8141 0.8396 0.6535
F1 score | 0.7829 0.8553 0.8656 0.7719
Time (s) 0.12 129.92 58.02 0.53

3.3 FastText Representation

The third representation used in the thesis is FastText. FastText, as proposed by
Bojanowski et al. [16], learns representations for character n-grams and represents
words as the sum of the n-gram vectors. It is an extension to the continuous skip-
gram model proposed by Mikolov et al. in [25]. FastText frames the problem of
predicting context words as a set of independent binary classification tasks. For a
chosen context position ¢, using the binary logistic loss, they propose the following

negative log-likelihood [16]:

log (1 + efs(wt’wC)) + Z log (1 + es(w“")) , (8)
nEM,c

where N, is a set of negative examples sampled from the vocabulary. Essentially,
it is the skip-gram model with negative sampling. In FastText, each word w is
represented as a bag of character n-gram. The boundary symbols (< and >) are
used to distinguish prefixes and suffixes. Furthermore, a different scoring function
s that takes the internal structure of words into account is proposed. This scoring

function is the sum of the vector representations of its n-grams [16]:

s(w, c) = Z z, Ve, (9)

9€Gw
where G is the size of a dictionary of n-grams and G,, C {1,...,G} is the set of n-
grams appearing in w. z, is a vector representation of each n-gram g. By enabling
the sharing of representations across words, this technique enables the learning of
reliable representations for rare words also. FastText trains quickly and does not
need any supervision or preprocessing. Additionally, it performs better than the

baseline models that ignore subword information [16].
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In the implementation, a module called fasttext!'” is used for representing the texts
using FastText representation. Using FastText on the Chakraborty et al. dataset
showed again pretty good results with the best-performing model being SVM. Over-
all, this is the best result achieved, with the F1 score of 0.9695 and all the other
metrics hovering around 0.97, suggesting that FastText is the preferred representa-
tion over TF-IDF and word2vec on this dataset. Table 7 displays the performance of
NB, SVM, RF and linear perceptron on Chakraborty et al. dataset using FastText

representation.

Table 7: FastText performance on the Chakraborty et al. dataset.

Metric NB SVM RF Perceptron
Accuracy | 0.8941 0.9693 0.9461 0.9600
Precision | 0.9022 0.9727 0.9584 0.9510
Recall 0.8868  0.9665 0.9341 0.9710
F1 score | 0.8944 0.9695 0.9461 0.9609
Time (s) 0.21 17.61  69.07 0.24

With the second Webis-Clickbait-17 dataset, performance again was pretty poor.
The best-performing classification model is hard to select as not a single model
achieved better performance on the Webis-Clickbait-17 dataset. Performance of NB,
SVM, RF and linear perceptron on Webis-Clickbait-17 dataset using FastText repre-
sentation is displayed in Table 8.

Table 8: FastText performance on the Webis-Clickbait-17 dataset.

Metric NB SVM RF Perceptron
Accuracy | 0.6954 0.7977 0.7948 0.3660
Precision | 0.4127 0.7607 0.7205 0.2693
Recall 0.6079  0.2407 0.2504 0.9436
F1 score | 0.4916 0.3657 0.3716 0.4190
Time (s) 0.89  400.58  93.46 0.34

Finally, while using the merged dataset, pretty good performance was achieved,
especially with the SVM classifier. A downside is that SVM takes, on average, around
six minutes to complete, while linear perceptron takes under a second at the little
expense of other metrics. Performance of NB, SVM, RF and linear perceptron on the

merged dataset using FastText representation is reported in Table 9.

"https://fasttext.cc/docs/en/python-module.html
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Table 9: FastText performance on the merged dataset.

Metric NB SVM RF  Perceptron
Accuracy | 0.8148 0.8816 0.8589 0.8506
Precision | 0.8593 0.8982 (.8918 0.8274
Recall 0.7550 0.8919 0.8185 0.8881
F1 score | 0.8038 0.8797 0.8536 0.8566
Time (s) 0.63 350.83 118.41 0.60

3.4 Discussion of the Results

Among the three text representations used in this work, TF-IDF performed as the
fastest method for representing words as vectors. It takes 0.33, 3.42 and 9.40 sec-
onds to complete on the Chakraborty et al., Webis-Clickbait-17 and merged dataset,
respectively. FastText takes 6.04, 13.06 and 19.11 seconds whereas word2vec is the
slowest one as it takes 12.89, 31.40 and 39.30 seconds. Results can be seen in Table
10. The naive Bayes classifier is the fastest algorithm. Linear perceptron requires a
little more time, followed by random forest, while SVM takes the longest. Regarding
the performance, FastText showed the highest average performance metrics excelling

over TD-IDF and word2vec representations.

Table 10: Time to perform each text representation.

Dataset TF-IDF  Word2vec FastText
Chakraborty et al. 0.33 s 12.89 s 6.04 s
Webis-Clickbait-17 | 3.42 s 31.40 s 13.06 s
Merged 9.40 s 39.30 s 19.11 s

The merged dataset is the most representative one since it is a merge of two
modalities of smaller datasets — one balanced and the other unbalanced with “border-
line” cases. Therefore, models trained on the merged dataset are the most generalized
ones. Again, SVM using FastText representation is the superior model in this setup,
but it has a considerable downside — a long time to execute. When considering the
execution time, linear perceptron using the FastText representation is the preferred

model.

14



4 Deep Learning

Deep learning is a subset of machine learning. The main differentiation is that deep
neural networks have more neurons, layers and connections [26]. Deep learning al-
gorithms emerged in an attempt to make traditional machine learning techniques
more efficient. Thus, allowing us to express more complex models, optimize more
parameters and automate feature extraction [27]. Over time, six main deep learning

architectures emerged:

e Feedforward neural network (FNN) (also known as Multi-Layer Perceptron
(MLP)) [23],

Convolutional Neural Network (CNN) [23],

Recurrent Neural Network (RNN) [28],

Generative Adversarial Network (GAN) [29],

Autoencoders [23],

]18.

Transformers [30

For the NLP tasks, it has been shown that variants of RNN — Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) are appropriate for long se-
quenced data (i.e., text), so they are elaborated in the continuation. The explanations
of FNN, CNN, GAN, autoencoders and transformers are omitted since they are not
used in the experiments performed in this thesis.

In recurrent neural networks, connections between nodes can form a cycle that
allows some nodes’ output to influence other nodes’ input. RNNs are capable of
processing input sequences with varying lengths by using their internal state (mem-
ory) [31]. This makes them suitable for various NLP tasks. Therefore, in this work,
two RNN architectures are used: Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) which will be explained in the following sections.

4.1 Long Short-Term Memory

Long short-term memory architecture was introduced in 1997 by S. Hochreiter and
J. Schmidhuber in [32]. The memory cell and the gates (including the forget and the
input gate) are the two essential parts of an LSTM. The input gates and forget gates

18 Although there are many more types of neural networks and new types emerge almost every
week, some of them may or may not fall into one of these six categories. These three are the most

popular ones and they can be further divided into subcategories.
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modify the information stored in the memory cell. The memory cell’s contents will
not change from one time step to the next, supposing that both of these gates are
closed. Gradients can flow across multiple time steps because the gating structure
enables information to be preserved across a large number of computations. Because
of this, the LSTM model is able to avoid the vanishing gradient issue that affects
the majority of recurrent neural network models. They offer better update equations
and hence better perform backpropagation learning steps [32]. Some of the main
tasks on long sequenced data they successfully complete include text generation, time
series prediction, speech recognition, handwriting recognition and polyphonic music
modeling, to name a few.

The structure of the LSTM network used in this work is displayed in Figure 5.

Besides the input layer, the network consists of the following layers:
e Embedding layer with 128 neurons,

e LSTM layer with 128 neurons with a hyperbolic tangent (tanh) activation func-

tion,

e Output dense layer with one neuron with the sigmoid activation function.

embedding_input | input: | [(None, None)]

InputLayer output: | [(None, None)]

'

embedding | input: (None, None)

Embedding | output: | (None, None, 128)

'

Istm input: | (None, None, 128)
LSTM | tanh | output: (None, 128)
dense input: | (None, 128)
Dense | sigmoid | output: (None, 1)

Figure 5: Structure of the LSTM network used in this work.
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The sigmoid activation function [27] (labeled by ®(xz)) is a non-linear activation

function that looks like the letter S. It is calculated using the following formula:

1
Cl4e
Its main advantage is that it exists between 0 and 1. Therefore, it is the ideal choice

O(x) (10)

in models where the probability has to be emitted on the output.

The hyperbolic tangent activation function (tanh) [27] is also a non-linear activa-
tion function but has a range from -1 to 1. It is an s-shaped function with the main
advantage that the negative inputs will be mapped strongly negative, and the zero
inputs will be mapped near zero in the tanh graph. It can be calculated using the
following formula:

et —e”
O(x) = e (11)

Both the sigmoid and hyperbolic tangent activation functions are differentiable
and monotonic while their derivatives are not monotonic. Figure 6 shows the differ-

ences between the two mentioned activation functions.

1.0 + — Sigmoid
Tanh /
0.5 A
X 0.0
o
_05_
_10_

Figure 6: Differences between the sigmoid and hyperbolic tangent activation

functions.

The LSTM network was trained across 20 epochs on all three datasets. Binary
cross-entropy [26] is employed for the loss function together with the Adam [33]

optimizer and a batch size of 64.
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Binary cross-entropy (also known as log loss or logistic loss) is a loss function
commonly used in binary classification tasks [26]. It measures the dissimilarity be-
tween the predicted probabilities and the true labels. Binary cross-entropy (labeled

as L(y, 7)) is calculated using the following formula:

D) = =5+ D u+1og(i) + (1= y) - log(1 — ), (12)

where y is the true label and ¢ is the predicted probability.
Figures 7, 8 and 9 show accuracies and losses during the training process on each
of the datasets.

Model loss and accuracy

1.0 A —— Loss
Accuracy

0.8 A

o
[=)]
1

Loss/Accuracy

o
Y
L

0.2 A

N\

T T T T

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0 A

Figure 7: Accuracy and loss during the training of the LSTM network using the
Chakraborty et al. dataset.
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Figure 8: Accuracy and loss during the training of the LSTM network using the
Webis-Clickbait-17 dataset.
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Figure 9: Accuracy and loss during the training of the LSTM network using the

merged dataset.
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4.2 Gated Recurrent Unit

Gated recurrent units were introduced in 2014 by Cho et al. in [34]. The design
of a gated recurrent unit is comparable to an LSTM. Similar to the forget/input
gates in the LSTM unit, the GRU contains a reset gate and an update gate. The
primary distinction is that the GRU uses leaky integration to completely reveal its
memory content. Although it is thought to be easier to compute and implement, it
was inspired by the LSTM [34]. Figure 10 shows the structure of the GRU network

employed in this work. The GRU network consists of an input layer alongside:
e Embedding layer consisting of 100 neurons,

e GRU layer consisting of 32 neurons with a hyperbolic tangent activation

function,

e Output dense layer with one neuron with the sigmoid activation function.

embedding input | input: | [(None, 50)]

InputLayer output: | [(None, 50)]

'

embedding | input: (None, 50)
Embedding | output: | (None, 50, 100)

'

gru input: | (None, 50, 100)
GRU | tanh | output: (None, 32)

'

dense input: | (None, 32)

Dense | sigmoid | output: | (None, 1)

Figure 10: Structure of the GRU network used in this work.

Similarly to the LSTM network, the GRU network was trained across 20 epochs on
all three datasets. The loss function is calculated using binary cross-entropy. Adam
optimizer and a batch size of 64 were used. Figures 11, 12 and 13 show accuracies

and losses during the training process on each of the datasets.
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Figure 11: Accuracy and loss during the training of the GRU network using the
Chakraborty et al. dataset.

Model loss and accuracy

1.0 A

—— Loss
—— Accuracy
0.8 A
>
& 0.6 1
5
o
O
<
0
9 0.4
0.2 A
0.0 T T T T

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Figure 12: Accuracy and loss during the training of the GRU network using the
Webis-Clickbait-17 dataset.
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Figure 13: Accuracy and loss during the training of the GRU network using the

merged dataset.

4.3 LSTM and GRU Results

This section compares the performances of LSTM and GRU using the usual evalua-
tion metrics (i.e., accuracy, precision, recall, F1 score and time). Table 11 shows the
performance of LSTM and GRU on the Chakraborty et al. dataset. Very similar per-
formance between LSTM and GRU can be noticed, with GRU slightly outperforming
LSTM.

Table 11: LSTM and GRU performance on the Chakraborty et al. dataset.

Metric LSTM GRU
Accuracy 0.9647 0.9714
Precision 0.9883 0.9655
Recall 0.9413 0.9784
F1 score 0.9643 0.9719
Time per epoch (s) 40.35 37.85

On the Webis-Clickbait-17 dataset, the performance results are similar but, as
expected, lower due to the nature of this dataset. In this case, GRU is again a
slightly better-performing model. Table 12 shows LSTM and GRU performance on
the Webis-Clickbait-17 dataset.
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Table 12: LSTM and GRU performance on the Webis-Clickbait-17 dataset.

Metric LSTM GRU
Accuracy 0.7523  0.7328
Precision 0.4864  0.4470
Recall 0.3950 0.4339
F1 score 0.4359 0.4404
Time per epoch (s) | 109.20  99.60

Finally, using the merged dataset, performances are in between the first two. Here,
the LSTM is a better-performing model. The LSTM and GRU performance on the
merged dataset is in Table 13.

Table 13: LSTM and GRU performance on the merged dataset.

Metric LSTM GRU
Accuracy 0.8364 0.8318
Precision 0.8417 0.8351
Recall 0.8306  0.8290
F1 score 0.8361 0.8321
Time per epoch (s) | 130.25 122.40

23



5 Title-Text Similarity

5.1 Cosine Similarity

Cosine similarity measures the similarity between two vectors in space [35]. The
following formula is used to calculate the cosine similarity between two documents d;
and dy and their vector representations V (dy) and V (dy):

sim(dy, ds) = ; (13)

V(dy) - V(dy)
ViV

[V (d)[|V(d2)|

where the numerator is the dot product of the vectors V(d;) and V(dy) and the
denominator is the product of their Euclidean lengths [14]. The values of the cosine
similarity range between -1 and 1.

Only the Webis-Clickbait-17 dataset contains both the titles and the texts of the
articles. Therefore, the cosine similarity between the corresponding titles and texts
can be calculated. The cosine similarity was calculated using the spacy!® library and
the en_ core_web_md?* trained pipeline for the English language. The average cosine
similarity between non-clickbait titles and corresponding texts is 0.6024, and the
average cosine similarity for clickbait titles and corresponding texts is 0.5411 (Table
14). This indicates that the non-clickbait titles better represent the corresponding

texts hence they are more similar. This result was expected.

Table 14: Average cosine similarity between titles and texts on the
Webis-Clickbait-17 dataset.

Non-clickbait ~ Clickbait
Cosine similarity 0.6024 0.5411

In Figure 14, the histograms of cosine similarities can be seen for non-clickbait
titles and texts (Figure 14a) and clickbait titles and texts (Figure 14b).

Ynttps://spacy.io/
2Onttps://spacy.io/models/en/
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Figure 14: Histogram of cosine similarity between titles and texts.

5.2 Deep Semantic Similarity Model

Inspired by the Deep Semantic Similarity Model (DSSM)?! developed by Huang et
al. [36] in 2013, a similar DSSM network was constructed in this work.

Using the obtained cosine similarity scores and word2vec for text representation,
a deep neural network that learns the similarity function was trained. Cosine sim-
ilarity scores were appended as a new column in our dataset and used as a target
variable. This is not a classification problem, but rather a regression model since we
are predicting continuous values. Therefore, standard metrics for evaluating of the
model, such as accuracy, cannot be used. Instead, mean squared error (MSE) [37]
and root mean squared error (RMSE) [37] were used.

MSE measures how close a regression line is to a set of data points, i.e., it measures
their difference. The differences are taken, squared and averaged across our data.

MSE is calculated using the following formula:

N

MSE = + 3" (s — 3" (14)

=1

where N is the number of samples we are testing against. RMSE, on the other hand,

is the square root of MSE:

N

RMSE = | > (5 — )% (15)

=1

21 Also known as Deep Structured Semantic Model [36].
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Besides the input layer, the DSSM neural network employed in this work consists

of three layers:

e Dense layer with 128 neurons and the ReLLU activation function,
e Dense layer with 64 neurons with the ReLLU activation function,

e Qutput dense layer with one neuron with the sigmoid activation function.

Figure 15 shows the structure of the DSSM neural network.

dense_input | input: | [(None, 200)]

Inputlayer | output: | [(None, 200)]

l

dense input: | (None, 200)

Dense | relu | output: | (None, 128)

l

dense_1 input: | (None, 128)

Dense | relu | output: [ (None, 64)

l

dense_2 input: | (None, 64)

Dense | sigmoid | output: | (None, 1)

Figure 15: Structure of the DSSM network used in this work.

Alongside the sigmoid activation function described earlier, here the ReLLU acti-
vation function [27] is used. ReLU or Rectified Linear Unit has a range from 0 to
infinity, making it ideal for convolutional neural networks and deep learning in gen-

eral. The function and its derivative are both monotonic. The following formula is
used for the ReLU:

®(x) = max(0, z). (16)

In the ReLU activation function, all negative values become zero. The ReLU

graph can be seen in Figure 16.

26



Using the Adam optimizer, the network was trained over the course of 100 epochs
with a batch size of 32 using MSE and RMSE as loss functions. Figure 17 shows the

loss function over the training epochs. The blue line denotes train loss and the orange

d(x)
o

Figure 16: ReLU activation function.

one denotes test loss.

Loss

Our model is performing well on the test set, as both the MSE and RMSE values
are relatively low. An MSE of 0.0118 and an RMSE of 0.2598 were obtained.

Model loss
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Figure 17: Training and test loss during training.
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6 Conclusion

Clickbait titles are more and more prevalent in online media, and this should be ad-
dressed. In this master thesis, various machine learning and deep learning techniques
were utilized for the clickbait classification on three datasets. Three datasets used in
this work are the dataset by Chakraborty et al., the Webis-Clickbait-17 dataset and
the merged dataset consisting of these two.

Three text representations were used, including TF-IDF, word2vec and FastText.
FastText representation proved to be the best one since it provided us with the highest
overall performance. Among the tested machine learning methods (NB, RF, SVM
and linear perceptron), SVM is the preferred one because it achieved the highest
average performance with F1 score of 0.8797 on the merged dataset. Still, SVM has
a substantial downside — it takes, by far, the most time to execute.

Deep learning techniques included the use of LSTM and GRU architectures. Due
to the similarities between these two architectures, their results (F1 scores of 0.8361
and 0.8321 on the merged dataset) are comparable. It is worth noticing that SVM
with FastText representation outperforms both neural networks by approximately
4%.

Finally, title-text similarity analysis was conducted. The results, expectedly, sug-
gest that non-clickbait titles are more similar to the texts. Therefore, they better
represent the article texts (average similarity of 0.6024) than the clickbait titles (av-
erage similarity of 0.5411).

The work in this thesis provides insights into different methods and models for
clickbait /non-clickbait classification. The results indicate that machine learning mod-
els are slightly preferred solutions when dealing with limited training corpora. The
results confirm that classifiers could be used to actively detect clickbait titles and
possibly enhance content quality and improve user experience by combating clickbait
sensationalism, which can also be the first indicator of misinformation.

There are a few limitations in this work that can be addressed in the future.
First, models are trained only on English titles. The datasets in this work are in En-
glish because there is a lack of quality datasets in other languages online. Collecting
non-English datasets would contribute to the field of clickbait classification in general.
Second, other text representations like n-gram models [38], character-level representa-
tion [39], syntax-based representation [40] and graph-based representation [41] should
be considered. Finally, other semantic similarity scores (i.e., similarity proposed by R.
Mihalcea in [42]) in the DSSM network can be tested. Likewise, additional machine
learning and deep learning techniques (e.g., transformers [30]) should be evaluated

since they may achieve better performance for this particular task.
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