
Izrada aplikacije za chat

Matejčić, Ivan

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Rijeka / Sveučilište u Rijeci

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:195:215025

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-12

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of
Informatics and Digital Technologies - INFORI
Repository

https://urn.nsk.hr/urn:nbn:hr:195:215025
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://zir.nsk.hr/islandora/object/infri:968
https://www.unirepository.svkri.uniri.hr/islandora/object/infri:968
https://dabar.srce.hr/islandora/object/infri:968

Sveučilište u Rijeci – Fakultet informatike i digitalnih tehnologija

Sveučilišni preddiplomski studij informatike

Ivan Matejčić

Creating a chat application

Završni rad

Mentor: Doc. Dr. sc. Lucia Načinović Prskalo

Rijeka, 12.rujna 2022.

Sažetak

Django je softver otvorenog koda pomoću kojeg je, uz korištenje programskog jezika Python,

moguće jednostavno i brzo kreirati web aplikaciju. Django služi kako autor ne bi trebao izgraditi novu

aplikaciju iz korijena, nego se posvetiti upravljanju backend-a i izradi frontend dizajna. Dolazi sa

ugradbenim komponentama (kao npr. sustav za prijavu, sustav baze podataka itd.) pomoću kojih se

autor može više skoncentrirati na izradu same aplikacije nego potrebnim dodatcima.

Cilj ovog završnog rada je iskoristiti Django i njegove prednosti pri kreiranju web aplikacije kako bi

kreirali aplikaciju za chat; aplikaciju u koju se korisnik može prijaviti, odabrati sobu za chat (iliti eng.

‘room’ ili eng. ‘channel’) te komunicirati s ostalim korisnicima aplikacije.

Ključne riječi

Django, chat, application, room, channel, Django Channels, WebSocket, template, Python.

Table of contents

1. Introduction .. 1

1.1 Django – what is it? .. 1

1.2 Structure of a Django application .. 2

1.3 How Django works .. 3

2. Premise .. 4

2.1 Django Channels ... 4

2.1.1 How Django Channels Works ... 4

3. Djat .. 6

3.1 Djat UI and functionalities .. 6

3.1.1 Djat frontpage ... 6

3.1.2 ‘Sign up’ page .. 7

3.1.3 ‘Log in’ page .. 7

3.1.4 ‘Rooms’ page ... 8

3.1.5 ‘Room’ page .. 9

4 Creating the application ... 10

4.1 Project setup ... 10

4.2 Djat .. 11

4.3 ‘chat’ application .. 15

4.4 ‘room’ application .. 22

5 Conclusion ... 33

6 Literature... 34

8. List of images .. 36

Page 1

1. Introduction

A chat application is an application which allows multiple users to communicate by sending and

receiving text messages over the internet.

Chat applications date back to the 1980s when Compuserve released the first dedicated online chat

service, CB simulator. Later, services like Skype, MSN Messenger, Facebook Messenger are more are

some of the most popular chat services used throughout the years.

Today, WhatsApp is the most used chat application in the world [18].

As chat applications evolved, they became more sophisticated. Nowadays, chat applications also

have features like being able to make calls (voice-only or even video calls), send voice messages, post

stories (ex. WhatsApp and Facebook Messenger) and much more.

Chatting is a very common and useful feature for applications to have. Games, streaming services,

technical support services, social media websites and many more services all incorporate chatting in

one way or another.

This thesis consists of six main chapters: Introduction, Premise, Djat, Creating the application,

Conclusion and Literature.

In the second chapter a general description of the chat application is given, what tools were used to

create the application, project structure and a description of tools used to enable the chat aspect of

the application itself.

The third chapter explains the application’s UI and the fourth chapter goes through the code of the

project to give further insight into how the application was made.

1.1 Django – what is it?

 Django [12] is a web framework for the programming language Python, which means it

supports development of web applications by providing built-in libraries and resources. This relieves

the developer of having to create the web application from scratch which is useful when creating a

web application as fast and reliable as possible.

Moreover, it controls how information within the web application itself flows as well as a template

environment which helps display the information on screen, a fully functional database for safely

storing the information, high-level security to ensure a safe web application experience and many

more.

Django was created by two developers, Adrian Holovaty and Simon Willison, in 2003 and initially

released in July 2005 [16].

Page 2

1.2 Structure of a Django application

Web frameworks are based on a framework architecture. A framework architecture dictates

how an app using a web framework works [2]. Django uses a Model-View-Template framework

(shown in Figure 1) architecture which consists of a Model, View and a Template [15].

A Model consists of data which the developer wants to use in the application. This data is most

commonly stored in a database (by default, Django uses SQL) and is the content which is to be

displayed on screen. Models are located in the ‘models.py’ file.

A View is a Python function/request handler which, depending on the user’s request, returns

equivalent HTTP responses, templates and content [3].

These views are executed using a corresponding URL connected to the view.

Views are located in the ‘views.py’ file.

A Template is a file (usually an .HTML file) which displays all the content and data as well as

information on how to display it.

Templates are located in the ‘templates’ folder.

Figure 1: Model-View-Template framework architecture

Page 3

1.3 How Django works

When a developer first creates a Django application and a web URL is requested by the browser,

Django receives the URL and looks into the ‘urls.py’ file to find the matching view for that exact URL.

Once it has done that, the equivalent model for that view is found within the ‘views.py’ file and its

models are imported into it from the database. The view then sends the model information to a

specific template located in the aforementioned ‘templates’ folder [12].

This is all being done inside a Django server which can either be ASGI (Asynchronous Server Gateway

Interface) or WSGI (Web Server Gateway Interface) [13]. The Django chat application created for this

project uses an ASGI server.

Finally, the template returns its content and data back to the browser, which is then displayed on the

screen, for the user to interact with (shown in Figure 2) [14].

Figure 2: How Django works.

Page 4

2. Premise

The application created for this project is called ‘Djat’ and is a Django chat application with a

backend built with Python and a frontend using JavaScript, HTML and CSS.

This thesis consist of several parts outlining the UI and the features of the application, as well as the

creation process.

In Order to have a functioning chat feature, the project uses Django Channels.

Also, this project consists of two Django applications: room and chat (shown in Figure 3). Djat is the

main application to which the other two applications are connected (this application contains the

‘settings.py’ file). The other two applications, chat and room, were created separately to achieve

better project organization; the chat application contains views, URL’s and templates related to the

aspect of the web application that does not include the chat functionality itself, so the log in page,

sign up page and frontpage.

On the other hand, the room app contains views, URL’s and templates related to the chat aspect of

the web application. This includes the room selection page and the chat page itself.

2.1 Django Channels

Django Channels is a Django project which extends Django’s abilities further from only HTTP,

allowing it to be able to handle WebSocket’s, IoT, chat protocols and more. It does this by wrapping

Django’s native asynchronous view support, all the while still preserving Django’s synchronousness

and ease of use [5].

For this project, WebSocket’s and chat protocols are used.

A WebSocket is a bidirectional communication protocol used mainly because of its higher speed

compared to HTTP [17].

Channels is based on an ASGI specification. For this reason, the web application uses an ASGI server

rather than WSGI (see above). It also uses a special server called Daphne, which is used when

deploying Django chat applications to Heroku [5].

2.1.1 How Django Channels Works

A Django Channels connection is split into two parts: a scope and a series of events.

A scope is a collection of details of an incoming connection (web request path, WebSocket IP address

etc.) and an event is triggered by the user when an HTTP request or a WebSocket frame is thrown.

For HTTP, a scope lasts once per request, but for a WebSocket a scope last for the lifetime of the

WebSocket itself. Events occur during the lifetime of a scope.

For example, when a user sends a message in the chat application, a scope is opened containing the

user’s username and ID. After that, the app is given a chat.recieved_message event with the event

text. Every time the user sends a message a new event is created. The scope is closed after a timeout

or if the application itself is restarted.

Page 5

The main component of Django Channels is a consumer [6]. A consumer is an event consumer; when

a new WebSocket or request comes in, Channels finds the right consumer for that specific

connection and make a copy of it. The developer writes code in the ‘consumers.py’ file which handles

various events which correspond with the app’s needs. Channels itself then handles the scheduling of

these events. This process will be explained in detail later.

Figure 3: Djat project structure.

Page 6

3. Djat

In this chapter, the web application interface is explained.

3.1 Djat UI and functionalities

3.1.1 Djat frontpage

When the user loads up the Djat chat web application on their browser, they are greeted by the

frontpage. This page contains a simple navigation bar on top with the user’s username to the left and

links to other pages on the website on the right (shown in Figure 4). If the user hasn’t signed up yet,

the username doesn’t show up (shown in Figure 5).

Moreover, the user is greeted by a floating ‘Welcome to Djat!’ message accompanied by a small

batch of text explaining the app.

Figure 4: Djat welcome page (user signed in).

Figure 5: Djat welcome page (user not signed in).

Page 7

3.1.2 ‘Sign up’ page

On the sign-up page, the user enters their credentials; username, password and confirm

password (shown in Figure 6).

This page incorporates Django’s built-in sign-up form which contains functioning password confirm,

password strength and username check features.

Upon successful sign up the user is taken back to the frontpage.

3.1.3 ‘Log in’ page

By design, the Djat log in page is similar to the sign-up page, however this time only the

username and one password input field are displayed (shown in Figure 7).

This page also incorporates Django’s built-in log in form which has functioning username and

password checks.

Upon successful log in the user is taken back to the frontpage.

Figure 6: Djat sign up page.

Page 8

3.1.4 ‘Rooms’ page

From this point, the user is able to click the ‘Djats’ link in the top right to access the list of

available rooms/channels to join (shown in Figure 8).

The list itself is styled like a grid and contains the room/channel name and a link to the room/channel

itself. The room/channel collection seen below is created by the admin on the Django administration

page. The user cannot create a new room/channel.

When the user clicks on their desired chat room/channel, they are taken to a page where they can

post messages in that room/channel (shown in Figure 8).

From this point, the user is able to go back to the frontpage by clicking the ‘Djat’ link in the

navigation bar as well as to log out from the application.

Figure 7: Djat room/channel selection page.

Page 9

3.1.5 ‘Room’ page

On this page, the user is greeted by a scrollable chat box containing a simple channel intro message

as well as the messages themselves.

The messages consist of the sender’s username, the date the message was sent and the message

content itself.

Below, there is a message input field and a ‘Send’ button.

If the user does not write anything into the input, they are unable to click the ’Send’ button. This was

done in order to prevent the user being able to send ‘empty’ messages.

In this example, the room/channel name is ‘Memes’ and multiple usernames can be seen in the chat

box.

From this point, the user can go back to the room/channel selection page by clicking the ‘Djats’ link,

go to the frontpage by clicking the ‘Djat’ link and log out of the application.

Figure 8: Djat chat room/channel page.

Page 10

Figure 10: Creating the 'chat' app.

4 Creating the application

In this chapter, the application creation process is explained.

4.1 Project setup

In order to successfully create the app, Python and Django themselves need to be installed.

For this project, Python version 3,8.0 and Django 3.2.8 are used [4].

After they are installed, the Django project itself needs to be created.

Figure 9: Creating the main 'Djat' Django project..

After this, we create the other two applications, chat and room, in a similar fashion [10]:

After the applications are created, we need to include them in the ‘settings.py’ file in the

‘INSTALLED_APPS’ section in the Djat project itself (shown in Figure 12):

With this, the setup process is complete.

Figure 11: Creating the 'room' app.

Figure 12: Including the 'room' and 'chat' applications.

Page 11

4.2 Djat

This is the Django project folder itself. Links to the other two applications, project settings

and Django channels configuration files are located here (shown in Figure 13).

This folder contains the following files: asgi.py, settings.py, urls.py and wsgi.py.

The asgi.py file integrates the Channels library (shown in Figure 14).

Figure 13: Djat project folder
tree.

Figure 14: asgi.py

Page 12

Here, we import the necessary modules needed to incorporate the Channels library.

We also import the routing.py file from the room application (will be explained later).

The code in the file defines the routing configuration. The configuration specifies that when a

connection to Channels is made, ProtocolTypeRouter is called and inspects the type of connection

established. If the connection is a WebSocket one (‘ws://’), the connection is passed to

AuthMiddlewareStack which then passes the connection to URLRouter which examines the

connection and routs it to a consumer, based on the provided URL patterns, in this case,

websocket_urlpatterns which are located in the routing.py file as mentioned before [9].

Furthermore, the settings.py file contains all project settings. In this file, static file locations,

database, template file locations, login redirect, login, log out URL’s, installed apps, app language,

time zone and more are located (shown in Figures 15, 16 & 17).

Figure 15: settings.py file (1).

Page 13

Figure 17: settings.py file (2).

Figure 16: settings.py file (3).

Page 14

Finally, in the urls.py file, the main URL paths are specified (shown in Figure 18).

The first path includes and points to the URL’s related to the chat application, the second path

includes and points to the URL’s related to the room application whilst the third path redirects to the

Django administration page only accessible by superusers.

This means if the user enters the main URL of the application (Welcome | Djat), the user will be

redirected to the frontpage of the chat application, as that is the default page of that application (will

be explained in the chat application chapter).

Moreover, if the user enters any URL with ‘rooms/’, they will be redirected to the room/channel

selection page, as it is the main page of the room application.

Figure 18: urls.py file.

http://djat.herokuapp.com/

Page 15

4.3 ‘chat’ application

As mentioned before, this is the application containing the main, log in and sign-up pages.

This application folder consists of the following files: the templates and chat folder in which the

base.html, frontpage.html, login.html and signup.html are located, admin.py, forms.py, models.py,

urls.py and views.py (shown in Figure 19).

The template file base.html defines the basic design and appearance of each subpage of the website.

The other subpages are extensions of the base.html file.

Also in this file the CSS code is located. This code is used to design both the base.html file and all the

other pages (shown in Figure 21).

Figure 19: 'chat' application tree.

Page 16

Figure 20: base.html template file.

The body of the file contains the navigation bar and the navigation links (shown in Figure 20).

The navigation page will display the user’s username if they are signed in. This is done using the

Django template language [8] which enables Django Python code to be written inside an HTML file.

This code is distinctly divided using ‘{% %}’ values for loops, and {{ }} values if a variable is entered.

Page 17

Figure 21: base.html CSS code.

Page 18

The second template file, frontpage.html extends the base.html file and displays the main greeting

message using simple HTML. This page also uses the Django template language in order to determine

whether the user is logged in or not.

Depending on whether the user is logged in or not, the appropriate welcome message will be

displayed (shown in Figures 22 & 23).

Figure 22: Welcome message (user is logged in).

Figure 23: Welcome message (user is not logged in).

Page 19

The third template page, login.html displays the built-in Django log in form (shown in Figure 24).

The body of the page contains one main div element containing a simple greeting message

underneath which the log in form is located.

As mentioned before, the user enters their username and password. Then, using the Django

template language, we check for any possible errors with the credentials and Django will not log us in

if the credentials are incorrect.

Figure 24: Log in page.

The last template page in the chat application is the signup.html template file. This file is similar to

the login.html file, but here we use the user creation form from the forms.py file in which we create a

new class called SignUpForm using the UserCreationForm module imported from

django.contrib.auth.forms as well as the built-in User model imported from

django.contrib.auth.models.

We use the User model inside the class and define the fields needed to allow the application to

create a new user (username, password1 and password2) (shown in Figure 25).

Figure 25: forms.py file.

Page 20

Furthermore, inside the urls.py, all the necessary URL’s for the chat application are defined (shown in

Figure 27).

Figure 27: urls.py

Figure 26: signup.html.

Page 21

The first URL path loads the frontpage view and takes the user to the frontpage. This goes back to the

urls.py file from the Djat project where this same path was defined, however it pointed to all these

chat application URL’s.

The second URL loads the built-in sign-up view and takes the user to the sing-up page, the third URL

loads the built in log in view and takes the user to the log in page and the last URL logs the user out

of the application.

Finally, the views.py file contains functions which are called on request (shown in Figure 28).

The first function, frontpage, takes one parameter, request, and with it renders the frontpage.html

template file.

The second function, signup, also takes one argument, request, and checks if the form entered is

valid. If the form is valid then the information entered is stored into the database, the user is logged

in and redirected to the frontpage.

If the form isn’t valid, a new form is called.

This function redirects the user to the signup.html page.

The models.py and tests.py files were not needed because in this application there is no data we

need to create to be viewed, as we are mainly using Django’s built in models and forms.

Figure 28: views.py file.

Page 22

4.4 ‘room’ application

In this application the chat functionality is defined. Also, the consumers.py and routing.py

files necessary for using Django Channels are located here (shown in Figure 29).

This application contains template files, views, URL’s, models and model registration files.

Firstly, in the admin.py file, the models used for this application are registered in the database.

In this case, this is the Room model (shown in Figure 30).

As a result, on the Django administration page, admins are able to add new rooms, edit or delete

them (shown in Figures 31 & 32).

Figure 29: room application tree.

Figure 30: admin.py.

Page 23

Figure 31: Django administration page.

Figure 32: All rooms.

Page 24

Moreover, inside the models.py file the necessary models are defined (shown in Figure 33).

The models are Room and Message. These models are defined as classes and contain attributes

which represent a database field.

Figure 33: models.py.

The Room class is defined first. Its attributes are name and slug.

Name is a CharField with a max length of 225, while slug is a unique SlugFIeld which is used to create

a valid URL for each room/channel [11]. This will be evaluated upon in the urls.py file later.

The Message class has room, user, content and date_added attributes.

Room is a ForeignKey [7]referring to the Room model, user is also a ForeignKey, but from the built-in

Django User model. Content is a TextField and date_added is a DateTimeField which automatically

specifies the time and date a message was sent.

Page 25

Furthermore, inside the urls.py file all the necessary URL’s related to the room application are

located (shown in Figure 34).

The first URL path loads the rooms view and takes the user to the room/channel selection page,

while the second URL path uses the slug attribute from the Room model to generate a valid URL to

the specific room.

The views.py file contains all the used views inside the urls.py file (shown in Figure 35).

Figure 35: views.py.

In this file we import all the necessary modules and models, and we define the two functions that are

locked, that is, that can only be accessed when the user is logged in.

The first view, rooms, takes one parameter which is request, gets all the values from the Room model

and renders them on the rooms.html template page.

The second view, room, takes the same parameter and gets the specific object from the Room model

identified by its slug, as well as the accompanying messages which are filtered to display only the

messages for that specific room and renders them in the room.html template file.

Figure 34: urls.py.

Page 26

Finally, in this application, the consumers.py and routing.py files are located. As mentioned before,

these are necessary files needed for Django Channels to work.

In the consumers.py file, a main class called ChatConsumer is created.

Inside this class, asynchronous functions are defined which help Channels when a specific event is

called (shown in Figures 36 & 37).

Figure 36: consumers.py (1).

Page 27

Figure 37: consumers.py (2).

Inside the class ChatConsumer, first we create an asynchronous view, connect, which is called

anytime the app is connected to the WebSocket.

Inside this view, based on the URL we are trying to connect to, we are getting the room name from it

as well as setting the room_group_name to have the prefix ‘chat’ before the room name itself.

After this, we join the two variables, self.channel_name and self.room_group_name into the

channel_layer using the predefined group_add() method. Finally, we use await self.accept() to

connect to the server.

After this we define a disconnect function and pass in the two aforementioned variables into it using

the built-in group_discard() method.

Next up, the function to receive text messages from the WebSocket is defined.

In this asynchronous function called receive which takes two parameters, self and text_data, JSON is

used to load the JSON content of the variable text_data. From this we can get the message,

username and room properties.

Then, this information is sent to the room group using the built-in method group_send(). We are

sending the contents of the self.room_group_name variable, and the object we are sending is of a

‘chat-message’ type, and we are sending the contents of the message, username and room variables.

Furthermore, a new method is created called chat_mesasage which takes two parameters, self and

event which contains the three variables sent in the previous function. This method receives the

content from the message and username variables and sends them to the WebSocket by converting

them to a JSON format.

Finally, a decorator @sync_to_async is defined which enables the ability to store all the information

Page 28

into the database. Inside this decorator, the function save_message is defined which takes the

parameters self, username, room and message. This function gets the User and Room objects from

the database based on what is sent from the frontend. For the User, the username is sent from the

frontend, whilst slug is sent from the frontend for the Room.

Finally we create a new Message object which is connected to the user, the room and the content

variable from the model is equal to the message variable.

Lastly, inside the routing.py file the consumer is imported and the URL patterns are defined (shown

in Figure 38).

Figure 38: routing.py.

A variable websocket_urlpatterns is defined, which is a list of paths. The path we are accessing is

using the WebSocket (as seen by ‘ws’) and room_name, using our previously created consumer

ChatConsumer and doing so as an Asynchronous Server Gateway Interface.

Page 29

The two template files used in the room application are room.html and rooms.html.

Rooms.html is the template file which displays the room/channel list, whilst room.html is the

template file which displays the chat aspect of each room (shown in Figure 39).

Figure 39: rooms.html.

On the rooms.html page, the user is greeted by a short welcome message underneath which is a list

of available rooms/channels for the user to join.

This is done using the Django template language by looping through the values in the Room model.

Also, the Django template language is used to display the room name under which is a link to the

specific room.

Page 30

Depending on the slug of the room, when the user clicks the link they are taken to the specific room.

Here, the room name is displayed again, however underneath it is a chat box filled with messages.

Under the chat box is an input field for typing a message and a ‘Send’ button (shown in Figure 40).

Similarly to the rooms.html file, using the Django template language the messages are displayed by

looping through the values of the Message model, as well as the accompanying username and date

sent.

At the bottom, the Django template language is used again to define the JSON scripts used so that

the JavaScript script can be successfully written (shown in Figures 41 & 42).

Figure 40: room.html.

Page 31

Inside the script, two variables are defined, roomName and username. These variables, using

‘JSON.parse()’ parse through our JSON scripts containing the room, message and username.

After that, a new WebSocket object is created. The connection uses an URL containing the given

address using the bidirectional connection between the server and client.

Then we print into the console the status of the WebSocket. If the WebSocket is open, ‘connected’ is

printed into the console. If the WebSocket is not connected, ‘onclose’ is printed into the console.

Next, we define a function which is called every time a message is sent. This function parses through

the value of the variable data and if the length of the variable isn’t null, the content of the message,

username and date_sent variables are generated. This is done by creating a simple HTML div

containing the values.

Figure 41: room.html script (1).

Page 32

Moreover, when the user clicks on the ‘Send’ button, a function is called. This function grabs the

element using document.querySelector and its value.

Then, the message content, username and room name are printed into the console as well as sent to

the WebSocket using JSON.stringify(). After that, the value inside the input field is reset and the

‘Send’ button is disabled.

Lastly, two functions are defined, scrollToBottom() and dynamicSendButton().

The scrollToBottom() function grabs the HTML div element containing the messages and scrolls to the

bottom of it offsetting the top scroll position and height.

This function is called after every newly sent message and at every page load.

The second function, dynamicSendButton() changes the state of the ‘Send’ button depending on

whether the contents of the input field are empty or not.

If the content is empty, the button is disabled. If the content is not empty, i.e the user has entered

something in the input field, the button is enabled.

Figure 42: room.html script (2).

Page 33

5 Conclusion

The topic of this thesis was the creation of a Django chat application. An insight into Django itself,

its structure, usage, advantages and disadvantages was given. The created application ‘Djat’ was also

described, as well as its UI, functions and code.

Django is a useful, lightweight tool that can be used to create fast and reliable web applications.

The abundance of modules and packages makes it easy to write simple, easy-to-understand Python

code.

This paper shows how to create a simple Django chat application. Knowledge of URL’s, WebSocket’s

and networks is needed to create a stable connection capable of sending, receiving and storing

messages.

for the frontend, JavaScript, HTML and CSS were used.

This project successfully demonstrated why Django is a useful tool for web application development.

Link to GitHub repo: IvanMatejcic/Djat: Finals project made using Django. (github.com)

https://github.com/IvanMatejcic/Djat

Page 34

6 Literature

[1] Wikipedia, Web framework, 23rd August 2022. Accessed August 2022:

https://en.wikipedia.org/wiki/Web_framework

[2] Noel Greene, Evolve, What is a web framework? Accessed August 2022:

What is a web framework? - evolve evolve

[3] W3Schools, Django Views. Accessed August 2022:

Django Views (w3schools.com)

[4] W3Schools, Django Getting Started. Accessed September 2022:

https://www.w3schools.com/django/django_getstarted.php

[5] Andrew Godwin, Channels Documentation, Introduction. Accessed August 2022:

Introduction — Channels 3.0.5 documentation

[6] Rubin Raithel, Channels Documentation, Consumers. Accessed August 2022:

https://channels.readthedocs.io/en/stable/topics/consumers.html

[7] Django Documentation, Models. Accessed September 2022:

Models | Django documentation | Django (djangoproject.com)

[8] Django Documentation, The Django template Language. Accessed August 2022:

The Django template language | Django documentation | Django (djangoproject.com)

[9] Collin Anderson, Channels Documentation, Tutorial 2: Implement a Chat Server. Accessed August

2022:

Tutorial Part 2: Implement a Chat Server — Channels 3.0.5 documentation

[10] Django Documentation, Writing your first Django app, part 1. Accessed September 2022:

Writing your first Django app, part 1 | Django documentation | Django (djangoproject.com)

[11] 13 years ago, StackOverflow, What is a ‘slug’ in Django? Accessed August 2022:

python - What is a "slug" in Django? - Stack Overflow

[12] W3Schools, Django Introduction. Accessed September 2022:

Introduction to Django (w3schools.com)

[13] Raoof Naushad, Medium, Difference between WSGI and ASGI? Accessed September 2022:

Difference between WSGI and ASGI ? | by Raoof Naushad | Analytics Vidhya | Medium

[14] Packtpub, How does Django work? Accessed September 2022:

How does Django work? | Django Design Patterns and Best Practices - Second Edition

(packtpub.com)

https://en.wikipedia.org/wiki/Web_framework
https://evolve.ie/q-and-a/what-is-a-web-framework/
https://www.w3schools.com/django/django_views.php#:~:text=Django%20views%20are%20Python%20functions,located%20on%20your%20app's%20folder.
https://www.w3schools.com/django/django_getstarted.php
https://channels.readthedocs.io/en/stable/introduction.html
https://channels.readthedocs.io/en/stable/topics/consumers.html
https://docs.djangoproject.com/en/4.1/topics/db/models/
https://docs.djangoproject.com/en/4.1/ref/templates/language/
https://channels.readthedocs.io/en/stable/tutorial/part_2.html
https://docs.djangoproject.com/en/4.1/intro/tutorial01/
https://stackoverflow.com/questions/427102/what-is-a-slug-in-django
https://www.w3schools.com/django/django_intro.php
https://medium.com/analytics-vidhya/difference-between-wsgi-and-asgi-807158ed1d4c
https://subscription.packtpub.com/book/programming/9781788831345/1/ch01lvl1sec12/how-does-django-work?
https://subscription.packtpub.com/book/programming/9781788831345/1/ch01lvl1sec12/how-does-django-work?

Page 35

[15] Bharath thippireddy, Youtube.com, Model View Template Design Pattern. Accessed September

2022:

Model View Template Design Pattern - YouTube

[16] Packtpub, The story of Django. Accessed September 2022:

The story of Django | Django Design Patterns and Best Practices - Second Edition (packtpub.com)

[17] Wikipedia, WebSocket. Accessed September 2022:

WebSocket - Wikipedia

[18] Statista, Most popular global mobile messenger apps as of January 2022, based on number of

monthly active users. Accessed September 2022:

Most popular messaging apps 2022 | Statista

https://www.youtube.com/watch?v=ktJfE4DHrv0
https://subscription.packtpub.com/book/web-development/9781788831345/1/ch01lvl1sec11/the-story-of-django
https://en.wikipedia.org/wiki/WebSocket
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/

Page 36

8. List of images

Figure 1: Model-View-Template framework architecture .. 2

Figure 2: How Django works. ... 3

Figure 3: Djat project structure. .. 5

Figure 4: Djat welcome page (user signed in). .. 6

Figure 5: Djat welcome page (user not signed in). .. 6

Figure 6: Djat sign up page. ... 7

Figure 7: Djat room/channel selection page. .. 8

Figure 8: Djat chat room/channel page. .. 9

Figure 9: Creating the main 'Djat' Django project.. ... 10

Figure 10: Creating the 'chat' app. .. 10

Figure 11: Creating the 'room' app. .. 10

Figure 12: Including the 'room' and 'chat' applications. ... 10

Figure 13: Djat project folder tree. .. 11

Figure 14: asgi.py ... 11

Figure 15: settings.py file (1). ... 12

Figure 16: settings.py file (3). .. 13

Figure 17: settings.py file (2). .. 13

Figure 18: urls.py file. .. 14

Figure 19: 'chat' application tree. .. 15

Figure 20: base.html template file. ... 16

Figure 21: base.html CSS code. ... 17

Figure 22: Welcome message (user is logged in). ... 18

Figure 23: Welcome message (user is not logged in). ... 18

Figure 24: Log in page.. 19

Figure 25: forms.py file. ... 19

Figure 26: signup.html. .. 20

Figure 27: urls.py ... 20

Figure 28: views.py file. ... 21

Figure 29: room application tree. .. 22

Figure 30: admin.py. .. 22

Figure 31: Django administration page. .. 23

Figure 32: All rooms. ... 23

Figure 33: models.py. .. 24

Figure 34: urls.py. .. 25

Figure 35: views.py. ... 25

Figure 36: consumers.py (1). ... 26

Figure 37: consumers.py (2). ... 27

Figure 38: routing.py. .. 28

Figure 39: rooms.html. .. 29

Figure 40: room.html. .. 30

Figure 41: room.html script (1). .. 31

Figure 42: room.html script (2). .. 32

file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073641
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073642
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073643
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073644
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073645
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073646
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073647
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073649
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073650
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073651
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073652
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073653
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073655
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073656
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073657
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073658
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073660
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073664
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073665
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073667
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073668
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073669
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073673
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073675
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073679
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073680
file:///C:/Users/ivanm/Documents/Fakultet/3.%20godina/6.%20semestar/Zavrsni%20rad/Seminar/matejcic_ivan_zavrsni_rad.docx%23_Toc115073681

