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Abstract: Retweet prediction is an important task in the context of various problems, such as
information spreading analysis, automatic fake news detection, social media monitoring, etc. In
this study, we explore retweet prediction based on heterogeneous data sources. In order to classify
a tweet according to the number of retweets, we combine features extracted from the multilayer
network and text. More specifically, we introduce a multilayer framework for the multilayer network
representation of Twitter. This formalism captures different users’ actions and complex relationships,
as well as other key properties of communication on Twitter. Next, we select a set of local network
measures from each layer and construct a set of multilayer network features. We also adopt a BERT-
based language model, namely Cro-CoV-cseBERT, to capture the high-level semantics and structure of
tweets as a set of text features. We then trained six machine learning (ML) algorithms: random forest,
multilayer perceptron, light gradient boosting machine, category-embedding model, neural oblivious
decision ensembles, and an attentive interpretable tabular learning model for the retweet-prediction
task. We compared the performance of all six algorithms in three different setups: with text features
only, with multilayer network features only, and with both feature sets. We evaluated all the setups
in terms of standard evaluation measures. For this task, we first prepared an empirical dataset of
199,431 tweets in Croatian posted between 1 January 2020 and 31 May 2021. Our results indicate that
the prediction model performs better by integrating multilayer network features with text features
than by using only one set of features.

Keywords: retweet prediction; multilayer network; natural language processing; text features;
multilayer network; Twitter data

1. Introduction

Nowadays, social media platforms and online social networks have become an im-
portant source of information. Users tend to rely on online communication platforms for
getting information, publishing posts that reflect their interests, views, and activities [1].
At the same time, users can express their opinions about other posts via different forms
of feedback, such as reposts, quotes, mentions, replies, likes, etc. All these activities affect
information spreading on social media [2]. In the last two decades, online social networks
have increased the spread of information, but also misinformation and disinformation,
which can lead to an infodemic and other negative side effects [3,4]. Therefore, exploring
patterns of information spreading on social networks is a significant aspect of research in
the domain of disinformation detection and infodemic. The primary motivation for this
research was the analysis of crisis-related communication on social networks. However, the
proposed approach can be applied in other domains for tasks related to retweet prediction.

Because social media platforms such as Twitter, Facebook, Instagram, and Weibo
play an increasingly important role, people are more likely to turn to them in search of
information during a global crisis. They can serve as an essential communication platform
in real-world crises, emergencies, or disasters [5,6]. Social media may even influence the
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course of global crises, particularly in the context of epidemics, climate change, migration
crises, economic crises, or wars. For example, the outbreak of the COVID-19 disease
caused a significant increase in social media usage among the public, and it seriously
affected the public’s understanding of the COVID-19 risk [7]. In some countries, there were
many negative attitudes toward vaccines and anti-pandemic measures promoted on social
networks [8]. Therefore, information-spreading analysis during a global crisis is of great
importance as one of the steps of social media monitoring (infoveillance).

Twitter is one of the largest social networks with around 330 million monthly active
users [9]. Consequently, it is one of the most studied social networks. Recently, it has
frequently been used for monitoring and tracking different aspects of healthcare informa-
tion and public disease [8,10,11]. Among all the user behavior on social media, retweets
are considered to be one of the primary ways of spreading information on Twitter [12,13].
There is a large number of studies that deal with the prediction of information spreading
on Twitter and other social networks. Many complex factors may influence the patterns of
information spreading. Thus, different studies propose different sets of features for retweet
prediction. Previous methods studied the problem by using various linguistic features,
personal information of users, or network properties [12].

In some recent studies, authors combined heterogeneous data sources: information
content, network structure, dynamics of spreading, information metadata, and other prop-
erties that can be referred to as heterogeneous data sources [1,13–17]. However, there
are properties that have not been fully explored in the task of retweet prediction. One
less-studied approach is the use of multilayer network properties as features, especially in
combination with other features from heterogeneous data sources. The multilayer network
is a formalism that captures various sorts of relationships over network data [18,19]. Used
in the context of a social network, a multilayer network can represent different actions
within the social network such as follow, share, quote, mention, or reply as the separate
network layer. Because each action has a different impact on information spreading, in this
way it is possible to make a fine-grade differentiation between layers and to include all this
information as predictors of retweeting. We have already shown that a multilayer network
structure is fundamentally more expressive than individual layers in examples of modeling
a multilayer language network [20] and multidimensional knowledge network [21]. In [22],
the authors use multilayer network features for disinformation detection in US and Italian
news spreading on Twitter.

Inspired by these results, we decided to employ multilayer network features in the
more general task of information-spreading prediction. However, in our approach, we
construct a different multilayer network of Twitter and select different network measures to
construct a multilayer network set of features. In addition, we combine multilayer network
features with text features. To the best of our knowledge, this is the first time that anyone
has attempted to use this set of multilayer network features in the task of retweet prediction
and the first time anyone has attempted to combine multilayer network features with
text features. We formalized our approach by introducing a multilayer framework for the
representation of key elements of communications on social networks.

The main objective of this study is to explore the potential of the multilayer network
measures as the set of features in the task of retweet prediction. Additionally, we investigate
whether the multilayer network features combined with text features perform better than
just one set of features. Therefore, this study explores how message features extracted from
heterogeneous data sources may affect tweet spreading in terms of retweeting.

Multilayer network features are extracted from the multilayer model of the social
network within which a message is spreading. For the purpose of retweeting prediction,
we propose and construct a multilayer network representation with four layers representing
actions of following, mentioning, replying, and a layer of tweets, and select several network
measures from each layer. Text features are represented as a low-dimensional vector
(embedding) that captures its semantics and structure. More specifically, we adopt a
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BERT-based language model, namely Cro-CoV-cseBERT [8] for representation of tweets as
embeddings, which we use as a set of text features.

We model the prediction problem as a binary classification task in which the first
class contains tweets with just one retweet and the second class contains tweets with
more than one retweet. Next, we explore the performance of different feature sets by
conducting an extensive set of experiments in which we train six machine learning models
in three different setups: (i) classification based on text features, (ii) classification based on
multilayer network features, and (iii) classification based on text and multilayer network
features. More precisely, we trained the following classifiers: random forest (RF), multilayer
perceptron (MLP), light gradient boosting machine (LGBM), category-embedding model
(CEM), neural oblivious decision ensembles (NODE), and attentive interpretable tabular
learning (TabNet model). We evaluated the performance of trained classifiers on three
different sets of features in terms of standard evaluation measures: accuracy, precision,
recall, and F1 score on a large dataset of tweets. For this purpose, we prepared an empirical
dataset of 199,431 tweets in the Croatian language posted during the pandemic period
between 1 January 2020 and 31 May 2021.

Our main research question is whether the use of multilayer network features in
combination with features from heterogeneous data sources yields better results in terms
of classification evaluation measures over just text features. Additionally, we are interested
in understanding which of the above features are most effective in the classification task,
and we analysed this by using the SHAP approach.

To summarize, the main contributions of this study are as follows.

1. We propose a multilayer framework formalism for Twitter representation based on
multilayer network and select a set of measures from each layer to be extracted and
combined with the metadata as the set of multilayer network features.

2. We conducted a set of experiments on a dataset of tweets using separate text features
and multilayer network features and their combination and evaluated the performance
of six machine learning classifiers.

3. We performed an analysis of feature importance to determine the impact of two sets
of features for the task of retweet prediction and studied various multilayer network
features chosen by using SHAP.

The rest of the paper is organized as follows. Section 2 discusses some of the existing
research in the prediction of retweeting. Section 3 describes datasets, machine learning
classifiers and the methods utilized in this study. Section 4 presents the results and analysis
of our proposed approach. Section 5 discusses the proposed approach. Finally, Section 6
concludes our work.

2. Related Work

Information-spreading analysis and the retweet-prediction task have been extensively
studied by a number of researchers. There are many different ways to approach the problem
of retweet prediction. It can be modelled as a binary or multiclass classification problem
in which classes are defined according to the number of retweets, and the model should
predict the class of a given tweet, as well as a regression/prediction problem in which
the model should predict the number of retweets for a given tweet [23]. There are also
some other approaches such as prediction a p value, which is the probability of a retweet of
the given tweet by the given user [24] or users’ retweet behaviour prediction [15], retweet
time prediction [13] or the prediction of the size of retweet cascade size as in [25]. In the
domain of complex networks, this task is usually described as the link prediction in the
network of retweeting. From a broader perspective, spreading patterns have been studied
in many fields ranging from disease spreading [26,27] to information spreading on social
networks [28].

In all these approaches, one of the major research questions is related to the identi-
fication of the properties that affect the spreading. There are many possible factors that
influence information spreading on a social network, ranging from linguistic features,
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personal information of users such as user profiles, user post history, user following rela-
tionships, network properties, etc. There are studies that try to predict retweeting based
solely on text properties [29,30] or based on topic and emotion extracted from text [31]. On
the other hand, many authors use only network properties to predict retweeting [32,33].

Some recent studies show the advantages of combining features from different, het-
erogeneous sources: information content, network structure, dynamics of spreading, in-
formation metadata, and other properties that can be referred to as heterogeneous data
sources [1,13]. There are still some combinations of heterogeneous data sources worth
exploring as predictors of spreading. One such approach is combining multilayer network
features with text features proposed in this study. In the following subsections we give an
overview of two research domains related to the proposed approach: (i) research studies
that combine features from heterogeneous data sources in the task of retweet prediction,
and (ii) research of the multilayer network approach.

2.1. Retweet Prediction Based on Heterogeneous Data Sources

Usually, in approaches based on heterogeneous data sources authors combine features
extracted from the message text and from the social network. There have been attempts
to combine content features (extracted from text) and contextual features (extracted from
networks) even in some earlier research studies. However, the proposed feature sets are
relatively simple and include only partial information extracted from the text and networks.
Thus, Suh et al. [34] examined two classes of features that might affect the retweetability
of tweets: (i) the content features that include whether the tweet contains URLs, hashtags,
and mentions and (ii) the contextual features that include the number of followers and
followees, the age of the account, the number of favorite tweets, and the number and
frequency of tweets. The results revealed that, when it comes to content features, URLs
and hashtags have a strong influence on retweeting. When it comes to contextual features,
the number of followers and followees, as well as the age of the account, seem to affect
retweetability. Similarly, in [35] the authors studied the effect of the message content in
the task of the spreading prediction of ideas. They analyzed the contribution and the
limitations of the various feature sets on the information spreading. According to their
results, it seems that a combination of content features with temporal and topological
network features minimizes prediction error.

In one more recent study, Sharma and Gupta [14] explored the impact of different
numerical features extracted from tweet content and network in the task of retweet pre-
diction. They proposed three features from the author’s profile that can capture the
behavioral pattern of the user: author total activity, author activity per year, and au-
thor tweets per year. They performed their experiment by using a large dataset (Scott,
Jason, and Sketch the Cow. “Archiveteam-Twitter-Stream-2018-08: Free Download, Bor-
row, and Streaming”. Internet Archive, Archive Team: The Twitter Stream Grab: https:
//archive.org/details/archiveteam-twitter-stream-2018-08, accessed on 20 September
2022) containing 100 million random tweets from the online twitter archive of August
2018. Their results showed that the proposed model has better accuracy when user features
are combined with tweet content features. Yin et al. [13] combined text and network
features and proposed a novel deep fusion of multimodal features (DFMF) method for
retweet time prediction. Their method combines text features and node features in a
way that it constructs a word-embedding layer to learn the semantics of a tweet and a
node-embedding layer to learn social relationships within the network. The proposed
method is evaluated on the real-world Twitter dataset (UDI-Twitter Crawl-Aug20123:
https://wiki.illinois.edu/wiki/display/forward/Dataset-UDI-TwitterCrawl-Aug2012, ac-
cessed on 20 September 2022) that contains 284 million following relationships, 3 million
user profiles, and 50 million tweets. The evaluation results showed that the proposed
method was more accurate in predicting the retweet time and can achieve as much as an
11.25% performance improvement on the recall accuracy compared to logistic regression
(LR) and support vector machine (SVM).

https://archive.org/details/archiveteam-twitter-stream-2018-08
https://archive.org/details/archiveteam-twitter-stream-2018-08
https://wiki.illinois.edu/wiki/display/forward/Dataset-UDI-TwitterCrawl-Aug2012
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The properties used for retweet prediction may be extracted from the author of the
tweet (author-centered prediction) or from the user who will retweet (user-centered predic-
tion). Thus, some recent studies combine features extracted from author, tweet text, and
user. For example, Fu et al. [15] proposed a prediction model MDF-RP (multidimensional
feature-based retweeting prediction) that combines features extracted from three different
sources: author, tweet, and user in order to predict if the user will retweet the given tweet
message. The evaluation of the proposed model was performed on the dataset of messages
crawled from Weibo (social network in China, similar to Twitter) from 1 June 2018 to 31 July
2018 with 3352 users and 316,829 tweets (the dataset is available upon request). Their results
based on different classifiers showed that the performances of MDF-RP outperformed the
basic features in terms of precision, recall, and F1 score.

On the other hand, Fridaus et al. performed only user-centered prediction [1]. They
analyzed the impact of the users’ behaviors on retweet activities based on three aspects:
topic preference, emotion, and personality. They proposed two types of retweet-prediction
models, one of which uses classification algorithms, and the other matrix factorization
algorithms. For their experiment, authors collected a dataset of tweets (dataset of Twitter
IDs: https://github.com/snadiaf/Twitter-Data, accessed on 20 September 2022). The
evaluation results showed that in terms of the F1 score, the proposed classification models
based on user behavior-related features provided a 5–9% improvement over baseline
models and the matrix factorization model showed a 4–6% improvement over the baseline.
Similarly, Ma et al. [17] explored features from different sources related to the hot topics
discussed by the users’ followees proposing a novel masked self-attentive model to perform
retweet prediction. They incorporated the posting histories of users with an external
memory and utilized a hierarchical attention mechanism to construct the users’ interests.
The results obtained on a dataset collected from Twitter with a total of 411,054 users and
36,807,681 tweets showed that the proposed method can perform better than state-of-the-art
methods. Dai et al. [16] improved the SVM model for the prediction of user forwarding
behavior of hot topics which was also based on user features. The prediction of user
retweeting behavior is based on combining three different data sources: user interest tags,
user history behavior, and external factors influence. For the purpose of the experiment,
the collected dataset of tweets was divided into a training dataset and a test dataset (the
training and test datasets are available at: https://www.sciencedirect.com/topics/engin
eering/test-dataset, accessed on 20 September 2022). In addition to retweet prediction,
heterogeneous feature sources have also been successfully used to predict buzz tweets.
Amitani et al. [36], in their study on the classification of “buzz” tweets, examine the trends
on social media and propose a classification method to study the factors that cause the
buzz phenomenon on Twitter. This phenomenon can be understood as an explosion of
popularity within a short period of time. The authors note that it is difficult to determine
the causes of the buzz phenomenon based solely on texts posted on Twitter. However, they
developed a multitask neural network by using both image and text-extracted features as
input and buzz class (buzz or non-buzz) and number of “likes” and “retweets” as output.
The text features of the tweets were extracted by using the pre-trained BERT model, and
the image features were obtained from pre-trained models such as VGG16. The results of
the experiments showed that the correct response rate for predicting buzz classes with the
proposed method using both text and image features was higher than when using the text
or image features alone [36].

2.2. Multilayer Network-Based Approach in Social Networks Representation

As can be seen from the previous section, there are many possibilities in combining
heterogeneous data sources for feature engineering in the task of retweet prediction, and
almost all of them include some features extracted from the social network, involving
author-centered properties, user-centered properties or a combination of both. However,
there is still a dearth of research studies that represent a social network as a multilayer
network which can capture different users’ actions (such as reply, quote, mention, and

https://github.com/snadiaf/Twitter-Data
https://www.sciencedirect.com/topics/engineering/test-dataset
https://www.sciencedirect.com/topics/engineering/test-dataset
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follow) as separate layers. As we claim in the introduction section, network properties
extracted from different layers provide more detailed insight into online communication,
and based on this it is possible to better predict the action of retweeting. Thus, we expect
that multilayer network measures combined with text features have great potential in the
prediction of retweeting.

One such study carried out by Pierri et al. [22] modeled Twitter as a multilayer
network including four layers: mention, reply, retweet, and quote layer. They applied
multilayer network representation of Twitter in the task of disinformation detection in US
and Italian news spreading over Twitter. More precisely, they used multilayer network
measures for classifying news articles pertaining to disinformation vs. mainstream news by
solely inspecting their diffusion mechanisms on Twitter. They trained a logistic regression
model to classify disinformation vs. mainstream networks on two large-scale datasets
of diffusion cascades (tweets for United States and Italy). The proposed approach has a
high accuracy (AUROC up to 94%) in the task of disinformation detection and suggests
that a similar approach based on multilayer networks might be possible for the task of
information-spreading prediction in general.

There are some other studies that used multilayer networks to model different aspects
of online social networks communication. Thus, Arenas et al. [37] modelled various kinds
of interactions (specifically, retweeting, mentioning, and replying) as separate layers aiming
to characterize interactions in online social networks during exceptional events that cause
a large number of tweets (such as the discovery of the Higgs boson). They showed that
a multilayer approach can reveal the presence of statistical regularities across different
events, suggesting that there are some universal properties of online social networks during
exceptional events. In [38], the authors proposed a method based on a multilayer approach-
capable of identifying influencers on online social networks. The layers represent users,
items, and keywords, along with the intralayer interactions among the actors of the same
layer. Magnani and Rossi proposed a model for the representation of multilayer networks
and applied this model to two online social networks [39]. Their results confirmed that
considering a multilayer network model allows us to extract results that do not correspond
completely to the ones that can be obtained from each network layer separately.

In [40], the authors explored two online platforms, Twitter and Foursquare, analyz-
ing the geosocial properties of links. They represented the two platforms as a composite
multilayer online social network, wherein each platform represents a layer in the network.
According to their results, by using the multilayer approach it is possible to success-
fully predict links across social networking services. It is also worth mentioning that
in [41–43] the authors investigated the spreading patterns in multilayer networks. How-
ever, they did not apply machine learning algorithms, and their approaches were based on
diffusion modeling.

All of these studies of the multilayer network-based approach in modeling social
networks are valuable, and they have proven the potential of multilayer networks when
it comes to capturing important properties of online communication. In our research, we
adopted some of these ideas. However, we have modeled Twitter differently and utilized
network measures that differ from all previous approaches.

3. Materials and Methods
3.1. Multilayer Framework Definition

In this section we introduce a multilayer framework, as a formalism that can capture
various aspects of message spreading on Twitter. This is an extension of our previous
work published in [4], in which we proposed a communication multilayer framework for
representing communication on social media. Here, we define a framework based on the
multilayer network that we use to represent different users’ actions on Twitter. Within the
multilayer framework, we aggregate the multilayer social network with a set of metadata
corresponding to text messages published on social media. Next we select set of network
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measures from each layer and define a set of multilayer network features used to train six
ML models for retweet prediction.

According to [18], a multilayer network is defined as a pair:

M = (G, C), (1)

where

G = {Gα, α ∈ {1, ..., m}} (2)

is a family of networks (graphs) Gα = (Vα, Eα) called network layers of M and
C = Eαβ ⊆ Vα ×Vβ; α, β ∈ {1, ..., m}, α 6= β is the set of interconnections between nodes of
different layers Gα and Gβ where α 6= β.

Similar to work presented in [4], layers are annotated as numbers from the set
{1, . . . , m}, where m is the number of layers. Like one-layer networks, multilayered net-
works can be directed or undirected, weighted or unweighted. Note that communication
in social networks is best described by using a weighted and directed multilayer network.

Next, we introduce and consider a set T of metadata related to text messages posted on
social networks. Generally, set T includes all messaging metadata that is available; however,
the concrete metadata represented within the framework may vary depending on the task.
In the case of Twitter and the retweet-prediction task, this metadata includes information
such as the number of retweets, quotes, mentions, etc. In the context of network analysis,
these vectors may be attributes of nodes that represent messages. Finally, the multilayer
framework is defined as a tuple:

MF = (M, T). (3)

3.2. Twitter Communication Represented by Using Multilayer Network

Given the frameworkMF defined according to the (3), we model a Twitter network
as the multilayer framework consists of four layers, thus m = 4. Each layer represents one
aspect of communication on Twitter as follows.

The first layer is the tweet layer, G1 = (V1, E1), in which nodes represent Twitter
messages and two nodes i and j are connected with the directed link if message i and j
have at least three words and/or hashtags in common. The direction of the link is defined
according to the timeline; from the first tweet to the second tweet. The link weight is
defined as the number of common words/hashtags. The second layer is the follower layer,
G2 = (V2, E2), in which nodes represent Twitter users and two nodes i and j are connected
with the directed link if user j follows user i. This is an unweighted network; however,
the whole network is weighted, and thus all weights in this layer are set to 1. The third
layer is the reply layer, G3 = (V3, E3), in which nodes represent Twitter users and two
nodes i and j are connected with the directed link if user j replies to user i. The weight is
defined as the number of replies. The fourth layer is is a mention layer, G4 = (V4, E4), in
which nodes represent Twitter users and two nodes i and j are connected with the directed
link if user j mentions user i. The weight is defined as the number of mentions. Next, we
define a set of interconnections between nodes of different layers. The first layer of tweets
(tweet layer) is connected with the second layer (follower layer) in the way that there is a
directed link from the user (follower) to every tweet that he/she posts. The reply layer is
connected with the tweet layer in the way that there is a directed link from the user to the
tweet if the user replies to this tweet. Analogously, the mention layer is connected with
the tweet layer in the way that there is a directed link from the user to the tweet if the user
mentions this tweet. The rest of the layers, G2, G3 and G4 represent a multiplex network in
which interconnections are established between the same nodes. A multiplex network is a
special case of the multilayer network in which interlayer links can only connect nodes that
represent the same node in different layers.
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The model of Twitter represented as the multilayer network is illustrated in Figure 1.
The figure is taken from [4] and adapted to the experiment of this study.

Further explanations and details of the multiplex, which is illustrated in Figure 1, the
connections between the nodes of the same or different layers, and the weights can be
found in [4].

Figure 1. Twitter represented via multilayer network. Communication on Twitter captured via four
layers of multilayer network: G1, tweet layer; G2, follower layer; G3, reply layer; and G4, mention
layer. The interconnections between nodes of the tweet layer and the follower layer are established if
the user (node) from G2 posts a tweet (node) from G1. Other interlayer links are not represented in
this figure due to the better visibility; however, G2, G3 and G4 are connected as multiplex network as
explained in the text above.

3.3. Multilayer Network Features

Next, we select a set of local network measures: degree (in/out), strength (in/out),
eigenvector centrality (in/out), Katz centrality (in/out), average clustering coefficient and
number of communities.

In general, local network measures are based on the number of node links, node
position within the network, and relationship with other nodes. These are centrality
measures, and they help in identification of the most influential individuals (nodes) in the
network. These measures can give an insight into how nodes communicate with each other,
which nodes are the most popular (hubs), how close are nodes with each other, and which
nodes control the network (in terms of information flow). In the context of retweeting
prediction, node centrality measures can exhibit the nodes with the largest potential to be
retweeted. It is important to emphasize that the appropriate usage of centrality measures
depends on the understanding of the type of links in the network and network flow [44].

Degree centrality of a node is the measure that takes into account the total number
of links incident with a node. In the context of Twitter network, degree centrality can be
interpreted as node with the largest number of followers or friends. However, if we capture
more than one layer, degree centrality may also indicate the node with the largest number
of mentions or replies. A higher degree implies popularity, and a higher possibility to gain
information that is flowing through the network. According to [45], for a node i and the
number of its links to other nodes ki, degree centrality is usually normalized by dividing it
by the maximum possible degree N − 1:

dci =
ki

N − 1
. (4)
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In weighted networks, a weighted degree is refereed to as node strength. Strength of a
node i is defined as the sum of all weights attached to links belonging to this node [45]:

si = ∑
j∈Π(i)

wij, (5)

where Π(i) denotes the set of neighbouring nodes of a node i.
Eigenvector centrality is introduced by Bonacich [46]. It takes into account the cen-

trality of the adjacent nodes. It can be interpreted as a measure of influence of a node in
a network. A high eigenvector score means that a node is connected to many nodes that
themselves have high scores. Relative scores are assigned to all nodes in the network based
on the concept that connections to high-scoring nodes contribute more to the score than
equal connections to low-scoring nodes. For the node i and constant λ centrality cei of node
i is defined as [46]:

cei =
1
λ ∑

j∈Π(i)
cej. (6)

Eigenvector centrality computes the centrality for a node based on the centrality of its
neighbors. The eigenvector centrality for node i is the ith element of the vector x defined
by the equation [45]

Ax = λx, (7)

where A is the adjacency matrix of graph G with eigenvalues λ. There is a unique solution
x, all of whose entries are positive, if λ is the largest eigenvalue of the adjacency matrix [45].

For directed graphs, Equation (6) calculates the “left” eigenvector centrality which
corresponds to the in-edges in the graph. For calculating out-edges’ eigenvector centrality,
it is necessary to reverse the graph G.

Katz centrality introduced by Leo Katz [47] calculates topological centrality that helps
to discover the relative influence of each node on the network. It is a generalization of
the eigenvector centrality. Katz centrality computes the centrality for a node based on the
centrality of its neighbors. The general equation for calculating Katz centrality for node i
is [47]:

kci = α ∑
j∈Π(i)

kcj + β, (8)

where parameter β controls the initial centrality and α < 1
λmax

.
Katz centrality computes the relative influence of a node within a network by measur-

ing the number of the immediate neighbors (first degree nodes) and also all other nodes
in the network that connect to the node under consideration through these immediate
neighbors. For directed graphs, it is possible to calculate in- and out-Katz centrality by
taking into account that Equation (8) can find “left” eigenvectors which correspond to
the in-edges in the graph. For out-edge Katz centrality, it is necessary to use the reverse
graph G.

Clustering coefficient of a node measures how well are neighbors interconnected and
quantifies if they are becoming a clique. The local clustering coefficient is calculated as the
proportion of links between the nodes within its neighborhood divided by the number of
links that could possibly exist between them. Real-world networks (and in particular social
networks) have on average higher clustering coefficient than random networks (when
comparing networks of the same size). The clustering coefficient of a node i is defined
as [48]

Ci =
eij

ki(ki − 1)
, (9)

where eij represents the number of pairs of neighbours of a node i that are connected.
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For each layer, we compute a set of network features separately and quantify different
aspects of the information-spreading process. Based on these five centrality measures, we
calculate values for in- and out-centrality measure (except clustering coefficient which is
undirected) according to the equations defined in (4)–(6), (8), (9). As a result, we have nine
features for each layer which makes 36 features in total.

In addition, we integrate network measures with the Twitter network metadata from
MF . We incorporate metadata from the Twitter network and use the following information
as additional vector features for each tweet: number of user followers, number of user
friends, number of mentions, number of hashtags, number of user statuses, indicator
whether tweet contains a URL, indicator whether tweet contains media, indicator whether
tweet contains COVID-19 related keywords, etc. We add some auxiliary variables, such as
whether the user is in the follower network, etc. Overall, 13 features are extracted from the
set T of Twitter metadata.

The result is a 49-dimensional vector as the representation of tweets extracted from
the multilayer frameworkMF .

3.4. Text Features

When we are faced with the problem of natural language processing, the choice of
an appropriate language model that will be useful in solving the given problem certainly
involves the development of a new sophisticated model or the choice of an existing lan-
guage model that includes, e.g., semantic, syntactic and other linguistic features of the text.
The seminal work of [49] contributed to the emergence of numerous variants of text repre-
sentation models in terms of low-dimensional vectors in continuous space embeddings,
where embeddings allow semantically related linguistic units to be represented with similar
vector representations. As described in [8], the first generation was characterised by shal-
low language models, such as Word2Vec [49], Doc2Vec [50], GloVe [51], and fastText [52].
They have some shortcomings, such as static embeddings in which multiple concepts
(i.e., different meanings of the same entity, polysemy) are not represented by different
embedding vectors, or poor performance in new domains. Due to such shortcomings,
the next generation of deep language models have been developed, namely ELMo [53],
GPT/GPT-2 [54], GPT-3 [55], and BERT [56]. They replace static embeddings with contex-
tualized representations and successfully solve the mentioned shortcomings. Moreover,
they enable learning of context- and task-independent representations which yielded an
improvement in performance on various NLP tasks [57,58].

To represent tweets in this study, we used the Cro-CoV-cseBERT language model
from [8]. Cro-CoV-cseBERT is based on CroSloEngualBERT [59], a trilingual language
model that was pre-trained on a large volume of texts from online news articles in Croatian,
Slovenian, and English, and additionally fine-tuned on a large corpus of texts related to
COVID-19 in Croatian (dataset Cro-CoV-Texts). Cro-CoV-Texts contains 186,738 news
articles and 500,504 user comments related to COVID-19 published on Croatian online
news portals, as well as 28,208 COVID-19 tweets in Croatian (excluding tweets from the
Senti-Cro-CoV-Tweets dataset) [8].

3.5. Classification Models

Here, we describe six ML models that we trained for binary classification of tweets in
our research.

Random forest (RF) is well known for taking care of data imbalances in different
classes [60,61], especially for large datasets [62].

Multilayer perceptron (MLP) is another relatively simple model that can be used to
perform classification [63].

The light gradient boosting machine (LGBM) classifier is based on decision trees to
increases the efficiency of the model and reduces memory usage. It is described in [64].

The category-embedding model (CEM) is a basic model that is relatively simple with
relatively simple architecture—a feed-forward network with categorical features passed
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through a learnable embedding layer. It is similar to MLP, but with learned embeddings
for category variables.

The neural oblivious decision ensembles (NODE) for deep learning on tabular data is
a model presented in ICLR 2020 [65]. According to the authors, it has beaten well-tuned
gradient-boosting models on many datasets. It uses a neural equivalent of oblivious trees
(the kind of trees that catboost uses) as the basic building blocks of the architecture.

Attentive interpretable tabular learning (TabNet) is another model coming out of
Google Research that uses sparse attention in multiple steps of decision making to model
the output [66].

3.6. Data Collection and Experiment Setup

To perform the experiments, data were collected from the social network Twitter. The
data were collected automatically by using a pipeline for a continuous collection of tweets
over a long period of time, with the data structure organized so that there are records of
users and their friends, their followers, and all their posts (i.e., published tweets) for a
given period of time. The data collection pipeline is organized in such a way that it first
collects accounts located in Croatia, and then it collects all their friends and followers, as
well as the published tweets of all the previously mentioned profiles.

The collected Twitter dataset (Cro-Tweets2021) captures tweets posted in the Croatian
language during the period between 1 January 2020 and 31 May 2021. The data were
collected by using tweepy [67], a Python library for accessing the Twitter API. After
preprocessing the tweets and removing tweets without retweet, the final dataset consists of
199,431 tweets. Next, we performed cleaning and processing of tweets following the same
procedure as proposed in [68]. This includes several steps including: replacing usernames,
replacing URLs, and translating emojis to ASCII code.

In the next step, we constructed the corresponding multilayer networkM and mul-
tilayer framework MF . Calculation of network measures was performed in a Python
package NetworkX [69]. Then, we extracted the multilayer network features and text fea-
tures. Before feature selection, we performed a detailed analysis of the features sets
(The results of the feature analysis are available at: https://github.com/InfoCoV/M
ulti-Cro-CoV-cseBERT/blob/main/notebooks/exploration/features_analysis.ipynb, ac-
cessed on 20 September 2022) including mutual information analysis. The whole pro-
cedure of collecting and analysing tweets is described in Figure 2, and Cro-Tweets2021
dataset (https://github.com/InfoCoV/InfoCoV/blob/main/Cro-Vect-Twitter.csv?fbclid
=IwAR0m1Ahk6Jui200DQozGp4eeLa7n8AaBaf53ROLmMOUsSYCMaAvS2LTfwuc, ac-
cessed on 20 September 2022) is publicly available.

In the next, step we train six ML classifiers in the task of binary retweet classifica-
tion: random forest, multilayer perceptron, light gradient boosting machine, category-
embedding model, neural oblivious decision ensembles and attentive interpretable tabular
learning model. For the purpose of training the classification models, we split the initial set
of tweets, T into training, validation, and test sets with an 80:10:10 ratio. It is important to
mention that we split the tweets according to the time stamps of tweets.

After training and testing all classifiers, we perform the SHAP analysis [70] to identify
the features that have the most impact on the classification.

https://github.com/InfoCoV/Multi-Cro-CoV-cseBERT/blob/main/notebooks/exploration/features_analysis.ipynb
https://github.com/InfoCoV/Multi-Cro-CoV-cseBERT/blob/main/notebooks/exploration/features_analysis.ipynb
https://github.com/InfoCoV/InfoCoV/blob/main/Cro-Vect-Twitter.csv?fbclid=IwAR0m1Ahk6Jui200DQozGp4eeLa7n8AaBaf53ROLmMOUsSYCMaAvS2LTfwuc
https://github.com/InfoCoV/InfoCoV/blob/main/Cro-Vect-Twitter.csv?fbclid=IwAR0m1Ahk6Jui200DQozGp4eeLa7n8AaBaf53ROLmMOUsSYCMaAvS2LTfwuc
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Figure 2. Tweets processing procedure.

4. Results

In this section, we present the comparison results of the performance of six trained
models by using three different sets of features. These are features from the text, features
from the multilayer network, and their combination. In the next step, we perform SHAP
values analysis.

4.1. Evaluation Results

We trained and compared six ML models, namely RF, MLP, LGBM, CEM, NODE, and
TabNet. The evaluation was performed in terms of standard machine learning classifi-
cation metric such as: accuracy (Acc), precision (P), recall (R), and F1-score (F1). Model
performance was measured in a macro-averaged setting to ensure equal care for all classes.

Based on the results presented in Table 1, several important observations can be
highlighted.
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Table 1. Comparison of results for six trained models in combination with three different set
of features.

Features Acc P R F1

Text 0.600 0.608 0.606 0.599
Network 0.673 0.675 0.675 0.673RF

Combined 0.671 0.672 0.673 0.671

Text 0.631 0.632 0.632 0.631
Network 0.667 0.666 0.662 0.662MLP

Combined 0.679 0.678 0.678 0.678

Text 0.600 0.621 0.611 0.595
Network 0.677 0.680 0.680 0.677LGBM

Combined 0.677 0.681 0.681 0.677

Text 0.625 0.629 0.629 0.625
Network 0.669 0.668 0.666 0.666CEM

Combined 0.680 0.679 0.679 0.679
Text 0.615 0.624 0.621 0.613

Network 0.667 0.667 0.661 0.661NODE
Combined 0.681 0.679 0.678 0.678

Text 0.630 0.630 0.630 0.629
Network 0.663 0.662 0.658 0.659TabNet

Combined 0.669 0.667 0.666 0.666

The first observation suggests that classifiers regularly achieve better results on net-
work features than on text features in terms of all considered performance measures (Acc,
P, R and F1).

Another observation concerns combined features (the union of text and network fea-
tures), which provide classifiers with even more fruitful ground for inducing classification
models. With respect to the standard measure of accuracy (Acc), the classifiers induced
from the combined features show a meaningful improvement over those induced from
the text features, ranging from 3.9 to up to 7.7%, whereas with respect to the F1 score,
this progress ranges from 3.7 to up to 8.2%. Considering the features from the network,
we also find that the performance improvement, which favors combined features over
network features, is at most 1.4% for Acc and at most 1.7% for F1 score. There are also
exceptions: for the LGBM classifier, performance remains the same whether features from
the network or a combination of features are used, and the exception is the RF classifier,
where combined features do not improve performance. In short, the observation based on
the results suggests that the features from the network complement the text features well,
and in such a combined set achieve better classification performance.

Considering only the most fruitful results are obtained with a set of combined features,
in terms of F1 score, CEM is the most successful classification model with 67.9%. The lowest
performance is achieved for the TabNet model with 66.6%. The MLP and NODE models
perform well compared to the CEM model, as their performance is only one percentage
point lower.

Based on these results, we decided to integrate the CEM model as the part of the
Multi-Cro-CoV-cseBERT model for retweet prediction based on multilayer network and
text features. We will further use this model for information-spreading analysis in the
domain related to COVID-19 pandemic.

4.2. Feature Analysis

Shapley additive explanations (SHAP), introduced in [70], is used to show the contri-
bution or importance of each feature to the prediction of the model. SHAP values analysis,
in the case of the RF model, was performed on a sample of 1000 examples from the test set.
The absolute SHAP value indicates how much a single feature affected the prediction.
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In order to understand the importance or contribution of the features for the whole
dataset, the bee swarm plot is illustrated in Figure 3. In this plot, the features are ordered
by their effect on the prediction in such a way that the most important feature is listed on
the top, and the rest of the list is sorted in descending order. The features’ importance is
determined according to SHAP values, which are calculated with a unified framework for
interpreting predictions [70] and presented simply with the mean average value for each
feature. Features are sorted by the sum of the SHAP value magnitudes across all samples.
In addition, the plot also illustrates how higher and lower values of the feature affect
the outcome. Small dots on the plot represent a single observation. The horizontal axis
represents the SHAP value, whereas the color of the dot shows whether this observation
has a higher (red) or lower value (blue) compared to other observations.

Figure 3. SHAP values analysis on bee swarm summary plot illustrating impact on model output.

The features listed in Figure 3 are in order of global importance, with the first feature
being the most important and the last being the least important. The most important
feature—log1p_followers_count—is found to have a very high positive contribution when its
values are high, and a very low negative contribution when its values are low. The same
applies to the variable entities.media, which is second in the order of feature importance. For
the third most important feature (log1p_statuses_count), high values of the variable were
found to make a high negative contribution to prediction, whereas low values made a
high positive contribution. Such conclusions can also be drawn from the plot for all other
features. Moreover, it can be seen that some features, such as tweets_keywords_3_out_strength,
hardly (or do not) contribute to prediction, regardless of whether their values are high or
low. It is interesting to note how some properties of the network are reflected in features
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that have a stronger impact than other features that reflect other properties of the network.
The most important feature is the number of followers (1. log1p_followers_count), and
the most important feature from the group of centrality measures is follower in-degree
(4. fallowing_users_graph_in_degree). It is fair to say that the concept of followers plays an
important role in the selection of contributing features. Apart from that, keywords are also
a superior contributing feature, especially in the form of features resulting from centrality
measures in/out-degree, in-strength and clustering coefficient (in Figure 3 those are the
features 5, 9, 11 i 12). A detail to note is that in-degree centrality of keywords has a greater
impact than out-degree. In terms of layers/graph types, the replay network has spawned a
larger number of features with valuable impact than the mention layer/graph. Last but
not least, network metadata also make a satisfactory contribution to the retweet prediction,
for example number of followers (follower count), number of changed statuses of the user
(statuses count), presence of media in the tweet (entities media), or presence of URL in the
tweet (entities URLs) are important features that are positioned at the top of the list.

Compared with other similar studies, our results are in line with the findings of
Suh et al. [34]. They also examined the content and contextual features in the task of
retweet prediction, but to a much lesser extent than our study. In general, their findings
suggest that retweetability has a very close relationship with the social network context of
the authors and the informational content and value contained in tweets, similar to our
results. In particular, they showed that among content features, URLs and hashtags have
strong potential in the prediction of retweeting. Furthermore, among contextual features
which are related to the network, the number of followers and followees as well as the age
of the account affect retweetability. In our results, the number of followers also has a high
correlation with retweeting. However, according to our SHAP analysis, the presence of
media has a much stronger impact than the presence of URLs. Next, the in-degree measures
of the follower layer and the tweet layer are ranked as high, as well as the impact of the
in-strength and out-strength centrality measures of the retweet layer. This suggests that
multilayer network measures have the potential for retweet prediction which has not been
shown before.

5. Discussion on Retweet Prediction Based on Heterogeneous Features

In this study, several aspects related to the retweet-prediction task are investigated.
The two main objectives were to explore the potential of multilayer representation of
the social network for the retweet prediction and to analyse the possibilities of retweet
prediction based on heterogeneous data sources.

Overall, the multilayer network features perform better than text features for all six
trained models. According to that, we can confirm that multilayer network representation
of Twitter has great potential for retweet prediction. These findings are in line with results
of the study [22] in which Pierri et al. have shown that multilayer network features perform
better in the task of disinformation classification on Twitter. Although this study modeled
Twitter differently than theMF method proposed here and used different network mea-
sures, all these results indicate that multilayer approach in the task of retweet prediction is
worthy of further examination.

Furthermore, according to the results presented in the previous section, we can con-
clude that the combination of multilayer network features with text features in general
performs better than only one set of features in the task of predicting the number of retweets.
We have to emphasize that the combination of features only slightly outperforms the mul-
tilayer network features. However, this is consistent for five of six models (only the RF
algorithm has better performance in the case of multilayer network features). The potential
of combination of features from heterogeneous data sources has been considered in several
studies before [1,13–17,34,35], and it has been shown that the combination of features is
better than one set of features. Specifically, in [15] authors showed that models based on
multidimensional features extracted from author, tweet, and user outperform models based
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on the standard set of features. Our approach also combines features extracted from tweet
with data related to author and user, but in a different way.

To the best of our knowledge, the combination of multilayer network measures and
text embedding as features for information-spreading prediction has not been examined
previously. The feature analysis performed by the SHAP approach indicates that among
multilayer network measures, the in-degree calculated from the follower layer and the
in-degree calculated from the tweet layer have highest impact on the model. Furthermore,
the impact of the in-strength and out-strength centrality measures of the retweet layer are
also high. Besides that, as expected, the number of followers and some other metadata,
such as the presence of media and URLs, have a positive influence on retweeting. These
findings suggest that except for the standard measures, multilayer network measures may
be valuable in retweet-prediction models.

Here we need to emphasize that feature engineering and the selection of appropriate
feature sets is an important step in all classification tasks, although some studies have
examined the potential of using deep neural networks to avoid the manual construction
of features. For example, in [12] authors proposed attention-based deep neural networks
in the task of retweet prediction, and in [71] the authors applied graph representation
learning to extract the structural attributes of the ego network and predict user retweet
behavior. However, it is still worth examining different possibilities in the construction
sets of features, especially the combination of features from heterogeneous data sources. In
this way, it is possible to detect which data sources have higher influence to information
spreading, and in the next step we can include these sources as an input into a deep neural
network. In this context, the next research direction of the proposed approach is to perform
joint representation learning from heterogeneous data sources: multilayer network and text.

Another important aspect of this research is the comparison of the performance of six
different ML algorithms in the task of retweet prediction. We identify the CEM model as
the one with the best performance according to all used evaluation measures in all three
feature set scenarios, whereas the overall lowest performance is achieved in the case of
TabNet model. Again, it has to be emphasised that differences across all algorithms are
not so significant. The only significant difference is in the performance of models that use
only text features in comparison to a multilayer network set of features which seems to be
significantly better for multilayer network features (as well as for combined features) for all
six models. This is again an indicator that multiyear network features have great potential
in the analysis of information spreading.

This research is an extension of our previous studies of online communication on social
media during the COVID-19 pandemic. In [72], we compared the retweeting of COVID-
19-related tweets and tweets that are not related to COVID-19. Our findings indicate that
nearly 60% of tweets related to COVID-19 belong to the high-spreadable class, whereas
less than 40% of non-COVID-19 tweets belong to this high-spreadable class. This suggests
that tweet content may have a high impact on retweeting (spreadability), especially during
a global crisis, such as the COVID-19 pandemic. In another study [73], we explored the
potential of graph neural networks (GNNs) in the task of prediction if the user would tweet
about COVID-19 or not. By using the proposed multi-Cro-CoV-cseBERT model for retweet
prediction, we will further analyse the information-spreading patterns in the domain of
COVID-19-related communication on Twitter.

This research has several limitations that we plan to address in future work. First,
our results are not directly comparable to other studies, because we modelled the task
of retweet prediction as the binary classification task into two classes: (i) class of tweets
with only one retweet and (ii) class of tweets with more than one retweet. In this way,
we try to predict whether the amount of retweets would be poor or not, but we did not
take into account tweets that are not retweeted at all. We decided to discard all tweets
with no retweets because there are too many reasons why the tweet is not retweeted and
this may negatively affect the prediction. We assumed that the prediction models would
perform better if we concentrated only on the dataset of retweeted tweets in this first
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step. In addition, we used this setup because this way we ensured balanced classes of the
dataset. However, in future research we plan to include tweets with no retweet into the
prediction task. Another limitation is that we used only one dataset of tweets to compare
the performance of features and ML models. However, this dataset is a representative
sample of tweets in the Croatian language posted during the pandemic years 2020 and
2021, and our intention was to analyse the crisis-related communication in Croatia during
the COVID-19 pandemic period. That is the reason why we trained and compared ML
models on this specific dataset of tweets.

6. Conclusions and Future Work

In this paper, we introduce a multilayer framework formalism for the representation
of online communication on social media. We utilized this formalism for feature extraction
from heterogeneous data sources: multilayer networks and text messages. We performed a
detailed analysis of possible features and a combination of network and multilayer features
in the task of binary classification of tweets according to the amount of retweeting.

The main focus of this research is to compare the performance of different sets of
features and its combination. In addition, we evaluated six different ML classification
models: random forest, multilayer perceptron, light gradient boosting machine, category-
embedding model, neural oblivious decision ensembles, and attentive interpretable tabular
learning model.

According to the overall results, exclusively multilayer network features performed
significantly better than exclusively text-based features for all six algorithms. Overall, our
results indicate that the structural features of Twitter represented as the multilayer network
might be effectively exploited in the retweeting-prediction task.

The combination of both feature sets has the best performance in the case of all
classification models, except the random forest. We identify that the category-embedding
model has the best performance according to the F1 score, which is 0.679. However, this
result is only slightly better than results of other algorithms, and we can conclude that all
six algorithms have similar performance in the task of retweet classification. Additionally,
we explored the impact of different features by using SHAP analysis and determine that
the number of followers in the network, the presence of media, the number of changed
user statuses, the in-degree on the follower network layer, and the in-degree on the Twitter
network layer features have major impacts on the model. Thus, we believe that our
multilayer network-based approach provides useful insights into the future development
of a system for predicting information spreading on social media.

The proposed approach can be further extended in the several directions, and we have
several of plans for future work. First, we plan to test more multilayer network measures
as predictors and also to explore the potential of deep learning automatic feature extraction
from the multilayer network in the task of retweet prediction. Secondly, we plan to extend
the multilayer framework model with the dynamic aspect (in the sense that we capture the
dynamics of users’ actions) and to use three sets of features for prediction of retweeting
and information spreading on social media in general. Thirdly, we plan to utilize graph
neural networks for link prediction.
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The following abbreviations are used in this manuscript:

Acc Accuracy
ASCII American Standard Code for Information Interchanges
AUROC Area Under the Receiver Operating Characteristics
BERT Bidirectional Encoder Representations from Transformers
CEM Category Embedding Model
COVID-19 Corona Virus Disease-19
ELMo Embeddings from Language Models
F1 F1 score
GloVe Global Vectors for Words Representations
GNN Graph Neural Networks
GPT Generative Pre-trained Transformer
LGBM Light Gradient Boosting Machine
ML Machine Learning
MLP Multilayer Perceptron
NLP Natural Language Processing
NODE Neural Oblivious Decision Ensembles
P Precision
R Recall
RF Random Forest
SHAP SHapley Additive exPlanations
TabNet Attentive Interpretable Tabular Learning
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