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Abstract

As a result of technological progress (hardware and software), the amount of data is
increasing and we are working to include all information that could be of importance. The
task from the field of NLP that tries to automate this process, information extraction (IE),
or rather, its subtask, relation extraction (RE), is studied in combination with the state of
the art " Bidirectional Encoder Representations from Transformers" (BERT). In this thesis,
first the basic concepts of Deep Learning and Natural Language Processing (NLP) with a
brief historical overview are introduced. Then, the summary on datasets suitable for the
task of extracting sentence-level relations is presented. Based on the presented datasets, a
new dataset for scientific RE, combol60, is created and used to fine-tune the BERT and
SciBERT models for the task. From the results, it can be inferred that thematically similar
(here: scientific) pretrainig corpora can indeed improve the performance of the later fine-
tuned models for RE on scientific data.

Keywords: Relation extraction, relation classification, BERT, SciBERT, scientific dataset



Sazetak
Izlucivanje relacija koristenjem metoda dubokog ucenja

U ovom diplomskom radu najprije se uvode osnovni koncepti dubokog ucéenja i ra¢unalne
obrade prirodnog jezika s kratkim povijesnim pregledom. Zatim je prikazan sazetak
skupova podataka prikladnih za zadatak izluc¢ivanja relacija na razini recenice. Na temelju
predstavljenih skupova podataka kreiran je novi skup podataka za izlucivanje relacija
znanstvene tematike, combol60, koji se koristi za douc¢avanje BERT i SciBERT modela za
dani zadatak izlucivanja relacija.

Iz rezultata se moze zaklju¢iti da tematski sli¢ni (ovdje: znanstveni) korpusi koristeni za
doucavanje pretreniranih BERT odnosno SciBERT modela doista poboljSavaju izlucivanje
relacija na znanstvenim tekstovima.

Kljuéne rijec¢i: izluCivanje relacija, klasifikacija relacija, BERT, SciBERT, skup
znanstvenih podataka
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1 Introduction

Natural language!, as a constantly evolving medium for communication, transferring of
ideas, thoughts and knowledge in human interactions, accounts for most of the data flowing
through the Internet. As a result of technological (hardware and software) advancements,
data flow volumes are increasing (i.e. big data phenomena evolved), and efforts to obtain
all the relevant information are significant. Although we can understand natural (spoken)
language effortlessly, it remains a difficult but necessary task to automate it with the help
of computers.

Natural language processing (NLP), as a research area of computer science and
artificial intelligence (Al), focuses on the design and analysis of computational algorithms
and representations for processing natural human language [2]. NLP has numerous tasks
and applications, including machine translation, text summarization, information retrieval,
sentiment analysis, text classification, topic modeling, and information extraction. For
a better overview, Figure 1 is presented below, followed by a brief historical review of NLP.

NLP Tasks

Text Text-to-Text Text-to-Data Knowledgt? Fake News and )
Preprocessing Generation SR e —|Bases, Ent.ltles Hate Spgech Chatbots Text reasoning
and Relations Detection
———
Coreference Machine Relation Fake news Common Sense
ﬂ{ Resolution } ﬂ{ Translation } {Text-to Speech} + Extraction { detection J ﬂ{ Slofkilling } Reasoning }
Natural
arEFOf Sreech ext Generation| Speech-to-Text Hkiion Stanc.e Lot Language
agging Prediction Detection Detection Tt
Word Sense Text Toxt-to-Image Named Entity Hate Speech Keyword
Disambiguation Summarization g Recognition Detection Extraction
Grammatical Text
Error Data-to-Text Entity Linking
c n Simplification
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Feature Lexical
Extraction Normalization
L7 v v
e Information
| Generation Classification Balrieyaiiand pepicsiant
Document Keywords
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Text
Classification
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/Document
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Question
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Figure 1: NLP tasks: Decomposition into main subareas-tasks, adapted from work

of Fabio Chiusano: https://medium.com/nlplanet/two-minutes-nlp-33-important-nlp-
tasks-explained-31e2caad2b1b

v 4 language that has developed and evolved naturally, through use by human beings, as opposed to an
invented or constructed (artificial) language, as a computer programming language (often used attributively)"

[1].
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It is important to note that some of these tasks, such as machine translation, speech
recognition (speech-to-text), and conversational robots (chatbots), had their earliest
prototypes in the 1950s. Inevitably, the prototypes were unsuccessful because the tasks
were far more complex than originally anticipated, as evidenced by the 1954 Georgetown
experiment [3], which was criticized by the Automatic Language Processing Advisory
Committee (ALPAC) in 1966, leading to a significant decrease in government funding.
To limit the scope of this work, earlier attempts at machine translation [4] and notable
examples from other tasks, such as SHRDLU |[5] (text reasoning) and ELIZA [6] (chatbot)
are mentioned only.

The latter part of the 20th century was characterized by conceptual systems based
on complex sets of handwritten rules and predefined ontologies for natural language
processing. The tedious task of manual crafting of rules was initially automated thanks
to technological (increase in computing capacity) and theoretical (Chomskian theories [7])
advances. During this time, NLP relied primarily on well-known and established machine
learning algorithms such as decision trees. In the early 1990s, it became clear that the
rigid rules generated by simple machine learning algorithms were not good enough. At the
same time, with the availability of larger text corpora and advances in machine learning, a
promising concept of statistical NLP emerged |[§].

Machine learning procedures can make use of statistical inference algorithms to produce
models that are more robust and reliable to unknown or erroneous inputs. Unlike language
processing systems, which were designed by hand-coding a set of rules, such as grammars or
devising heuristic rules for derivation, the machine learning paradigm instead requires the
use of statistical inference to automatically learn such rules through the analysis of large
numbers of typical real-world examples [9] [8]. For this reason, the latter can be made more
accurate simply by providing more input data. The others, on the other hand, can only
be made more accurate by increasing the complexity of the rules, which is a much more
difficult task [10]. C. D. Manning and J. Hirschberg in [9] state that the central finding
of new statistical approach to NLP is that simple methods using words, part-of-speech
(POS) sequences, or simple templates often achieve notable results when trained on large
quantities of data.

The majority of research has already shifted to statistical and probabilistic models as
we enter the twenty-first century. Slow but consistent research progress was made between
the years 2000 and 2014, including the use of neural networks (the first neural language
models) and dense vector representations of words. Followed by the first implementations
of recurrent neural networks (RNN) and later, a more sophisticated version, the long short-
term memory (LSTM) neural networks used for sequence-to-sequence tasks such as machine
translation. The research community quickly realized the potential of RNNs, which sparked
a boom in RNN-based applications that quickly replaced earlier state-of-the-art technologies.
A year later, in "Neural Machine Translation by Jointly Learning to Align and Translate"
Bahdanau et al. introduced the attention mechanism [11]. The concept gained a lot of
interest from the research community, even resulting in Google’s change of course towards
a new neural machine translation model [12] in 2016 with only 500 lines of code, replacing
the previous 500,000 lines of phrase-based machine translation, as stated by Jeff Dean [13].

The famous scientific paper "Attention Is All You Need (2017)" by Vaswani et al.
[14] introduced the new attention-only architecture called Transformer. Transformers



became the new state of the art and have replaced RNN-based approaches in recent years.
Meanwhile, the concept of pretrained language models (PLM), first proposed by Dai
and Le [15] in 2015, has received much attention. The basic idea is that by running the
language model (LM), we can obtain contextualized word representations that can then
be used as a base layer in a supervised neural network for any task. With this in mind,
one of the first attempts at neural language modeling (NLM)? for the later fine-tuning on
downstream tasks were the ELMo model of Peters et al. [16], which is based on the biLSTM
architecture and ULMfit model of Howard and Ruder [17] based on transformer architecture.
Later in the same year, the widely successful BERT model was introduced in paper "BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding" of Devlin et
al. [18]. To better understand the evolution and the nomenclature of the concept of large
language models (LLM) which stem from the PLM idea, the reader is encouraged to inspect
the work of Zhao et al. [19].

1.1 Motivation and contribution

In this work, the BERT model is used as a base model for fine-tuning on the relation
extraction objective due to its proven good results on the majority of NLP tasks. In
addition, a performance comparison of two models SCiBERT and BERT a the created
dataset called combol60 is performed to provide insight into contributions of using
different corpora during pretraining. Primarily, this work tests the hypothesis "Pretrained
models should differ in their results when the pretraining set is thematically equivalent
to the later fine-tuned objective."; or, to further specify and reframe it into the research
question, "Will the SciBERT model perform better than the BERT model on the
relation extraction task on scientific corpora". Although the final conclusion cannot
be drawn based solely on this isolated experiment, it certainly reinforces the insights into
the answer. Below, the major contributions of this thesis are listed:

e Creation (selection) of the new scientifically oriented dataset useful for further
benchmarks on reletion extraction- combo160;

e Two models (BERT and SciBERT) fine-tuned for RE available for use through
OpenNRE toolkit [20];

*Distinction is made between statistical language models (SLM) developed from the period of 1990 to
2010 (based on machine learning approaches and mainly referred to as n-gram models) and neural language
models (NLM) based strictly on neural networks. The PLM concept could be observed as a subclass of
NLM.



1.2 The structure of thesis

In the next section 2 reader is introduced to the task of relation extraction and its historical
background. Together with the motivation, a connection with the construction of knowledge
graphs is established. The following section 3 introduces the basics of neural networks before
the detailed section 4 discusses the transformer architecture and the architectures of BERT
and SciBERT used in this work. Next the summary of the datasets used is provided in the
Section 5. Section 6 presents the newly created dataset combo160 and the experimental
setup. The final Sections of the paper, Sections 7 and 8, cover the results, and conclusion
respectively.



2 Relation extraction

The sources of unstructured and semi-structured text on the Web flood the daily user,
whether news journals, email communications, blogs, forums, online encyclopedias,
government documents, or papers from the scientific community. We are struggling to find
a way to automatically structure the information that lies among these infinite sources of
data. Information extraction (IE) is the task (field) of NLP that deals with the problem
of extracting information from unstructured texts, as can be seen from the definition from
Sunita Sarawagi in [21]:

"Information FExtraction refers to the automatic extraction of structured
information such as entities, relationships between entities, and attributes
describing entities from unstructured sources."

IE is not a trivial problem, it is divided into a number of smaller tasks, which include
named entity recognition (NER), coreference resolution, and relation extraction. Let us
now define the main topic of this thesis. Relation extraction (RE) is the subtask of
information extraction that consists of identifying mentions of the relations of interest in each
sentence, paragraph, or larger unit of text. It usually involves extracting the relation between
two or more (named) entities [22]. Named entities (NE) are traditionally detected by first
applying NER and then RE. The result can be defined as a word or phrase representing a
specific real-world object. To further clarify, RE model takes unstructured text with/without
marked entities as an input and outputs the triples that usually resemble:

(subject (named entity), relation (relation type), object (named entity))

In the Table 1 below we can see several examples of extracted relations. Note that the
underlined parts represent the entities detected by the NER model or jointly in the relation
extraction model as of recent trends.

Sentence Relation

Relation extraction (RE) is the subtask of
information extraction.

subtask of

There is a house way down in New Orleans location of
The town blossomed in the 18h and 19th
centuries with the development of roads to the | near body of water
seaside and waterways along the Kupa River.
Though Kid A divided listeners, it was later | "named the best
named the best album of the decade by multiple | album of the
outlets. decade by"

Now that the first person interface has become
the design of choice for the industry, Id will need | "has become"
to find new innovations.

Table 1: Examples of relations in sentences: First three rows depict RE with finite
set of relations, while latter two represent RE without previously defined schema.



Upon closer inspection, we can see similarities in nomenclature between the first three
examples, and the same is true for the other two examples at the bottom of the Table.
The Table previews two different understandings of the relation extraction task: the first
approach considers multi-class classification on the finite set of relations, and the second
approach refers to the much harder task of identifying relations without a strictly defined
template of what the relation should look like. The first technique is erratically specified
also as the relation classification (RC). For further insight into the definition of relation
extraction, the reader is encouraged to examine the research of Bassignana and Plank [23],
where the definition of the RE task is revisited along with a comprehensive survey on RE
datasets. In the next paragraph, a brief overview of the evolution of RE methods is provided.

Relation extraction, compared to other NLP tasks is a relatively novel discipline, with
the first attempts considered dating back to the beginning of the 21st century. According
to Hun et al. [24] the evolution of RE is roughly divided into 3 parts:

e Pattern extraction models

The first models rely on sentence analysis tools that identify syntactic
elements in the text, whereupon pattern rules are automatically generated.
Pattern rules are error-prone and therefore require a high level of intervention
by human experts.

e Statistical relation extraction models

Along with the rest of NLP, RE has evolved to statistical models that
significantly reduce the need for human intervention and provide better
coverage of the task. The authors suggest some approaches that are
used: feature-based methods, kernel-based methods, graphical methods, and
embedding-model inspired methods.

e Neural relation extraction models

With the increasing usability and popularity of neural networks (ININ)
(discussed in section 3), especially with the use of GPU [25], methods
incorporating them quickly overtook the field of RE. The first phase of use
included various NN architectures that attempted to capture the semantics of
text, such as recursive neural networks, convolutional neural networks (CNN),
attention-based neural networks, and recurrent neural networks (RNN),
which dominated the field until the advent of the transformer architecture
and approaches relying on pretrained (large) language models.



Relation extraction, as done by the majority of the research community, is usually
tackled in two main setups:

e Pipeline approach

In the pipeline approach, the NER and RE tasks are trained separately,
therefore the RE model expects already extracted entities in the input text,
which may be of lower quality, propagating the error. Although the pipeline
approach suffers from error propagation, it is easy to implement and yields
good results, as shown in the work of Nguyen et al. [26], Ale et al. [27], and
Zhou et al. [28].

e Joint entity and relation approach

In joint entity and relation extraction, the model is trained to perform both
tasks simultaneously while benefiting from the use of interrelated signals.
This approach has attracted a lot of attention in recent years and has provided
new state-of-the-art results in various benchmarks. Some examples are the
work of P. L. Huguet Cabot and R. Navigli [29], which define the RE task
as seq2seq generation, and Tang et al. [30] which uses matrix-like interaction
maps to effectively represent relations and NE together.

Before moving to the definition of neural networks and advanced architectures such as
transformers, a discussion on evaluation and the primary motivation for RE is presented.

2.1 Relation extraction evaluation

Relation extraction and its associated named entity recognition task are relatively difficult
to evaluate, especially when two tasks are trained in a joint scenario (sometimes referred to
as end-to-end RE). Taillé et al. [31] discuss this problem further and address the common
errors that occur even in state-of-the-art models for joint RE and NER tasks. In this
thesis, the NER task is neglected, i.e., the model expects tagged inputs for further standard
multiclass classification. For this task, seven metrics are presented: Micro and Macro
versions of precision, recall and F1-score, and the standard accuracy metric. These metrics
rely on a confusion matrix, a cross table that records the number of occurrences between
actual classes and classes predicted by a model. In Figure 2 the example of two class
classifications confusion matrix is presented, where:

e True positive (TP) - number of times a model correctly predicted the positive
class

e True negative (TN) - number of times a model correctly predicted the
negative class

e False positive (FP) - number of times a model falsely predicted the positive
class

e False negative (FIN) - number of times a model falsely predicted the negative
class



Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Megative (0) FN TN

Predicted Values

Figure 2: Binary confusion matrix: Cross table that records the number of
occurrences between actual classes (values) and classes (values) predicted by a model,
where TP and TN count values that are correctly predicted by model as positive and
negative respectively. Adopted from: https://towardsdatascience.com/understanding-
confusion-matriz-a9ad42dcfd62

For brevity, the labels (TP, TN, FP, FN) are explained on binary classification task, a
similar concept remains with the increasing number of classes with further elaboration on
the calculation of each of the four explained values. An in-depth review of TP, TN, FP, and
FN calculations on the multiclass classification work of Grandini et al. [32] is recommended.

2.1.1 Accuracy

Accuracy, the metric that rewards models with the most correct predictions (TP and TN)
is computed as:

TP +TN
TP+TN+FP+FN’

accuracy =

This metric works desirably for balanced datasets, i.e. datasets that have a similar
distribution of instances in all classes.

2.1.2 Precision

Precision is defined as the ratio of TP predictions over the sum of TP and FP predictions.
Calculation on binary classification is straightforward:

TP

precision = m .

Precision can also be used on multiclass classification with two different approaches: for
each class individually (tediously observing binary classification for each class) and with
averaging across all classes (micro and macro averaging). Of two, the latter is used both
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for precision and recall calculation, also extending to Fl-score. There are two standards
used for averaging along classes:

e Macro precision

Macro precision is calculated similar to calculating precision for each class
individually in a multiclass problem. To calculate precision in this manner,
for each class, we treat all other classes as negative, leaving us with one
positive class consisting of a single class, and one negative class consisting
of the rest of the classes. After calculating precision for each class in this
manner, per-class precision is averaged as:

precisionc + precisioncg + ... + precisiono

N

PreciSionN fACRO =

where N is the number of classes denoted by C1 to CN.

e Micro precision

Micro precision uses the same base concept. For each class, in the same
manner, as the first step of Macro precision, we sum all TP, FP, and FN
instances per class. After this process, we sum all of the TPs per class
together into a Total True Positive sum, the same is done for FP and FN.
Based on these three total sums, the precision is then calculated:

TP1 —+ TPQ + ...+ TPN

DTecitSioN [ [CRO = TP, +FP,+TP,+ FP,+ ...+ TPy + FPy
_ TProrar
TProrar + FProrar
2.1.3 Recall

The recall is defined as the fraction of TP elements divided by the total number of positively
classified units, i.e. TP and FN elements. The recall is then defined as:

TP

recall = m

When working with multiple classes, the procedure is similar to the precision:



e Macro recall

recallcy + recallgs + ... 4+ recallon
N

recallpracro =

where N is the number of classes denoted by C1 to CN.

e Micro recall

TPi+TP,+ ..+ TPy
TP+ FN,+TP,+ FNy;+..+TPNx+ FNy

recallyrroro =

_ TProrar
TProrar + FNroraL

2.1.4 Fl-score

F1-score combines precision and recall of the model as their harmonic mean:

- 2(precision  recall)

precision + recall

Since the metrics on which the Fl-score rely have different approaches, mainly micro and
macro averaging, the same classification is present for the Fl-score. Thus, there exists
a micro and macro version of the Fl-score. Fl-score is mainly used to compare models’
performances while considering both, recall and precision.

10



2.2 Knowledge graphs and RE

Let us define knowledge as the understanding of, or a piece of information about a subject
gathered through experience or study, known by one or more persons [33]. Knowledge
can be gathered from various sources and in various forms, including large corpora of text
(natural language). If we observe the sentence: "One of Nazor’s main prose works is the
extensive novel Loda the Shepherd (Pastir Loda) (1938)." we can safely deduce following
facts:

e "Loda the Shepherd" is a novel.
e "Loda the Shepherd" was written in 1938.

e Nazor wrote "Loda the Shepherd".

We can say that we have gained knowledge about the subject of Nazor or the novel
"Loda the Shepherd". Let us suppose that we want to store this knowledge. One of the
possible options, in this case, would be the knowledge graph. Knowledge graph (KG)3 is
a graph-like structure* with entities (e.g., Nazor, novel, or "Loda the Shepherd") connected
via the edges representing the relations (e.g. "Loda the Shepherd” is a novel.). With this
setup, it is clear that relation triples can be viewed as the single edge, together with the
incident nodes.

Thus, knowledge graphs can be constructed automatically from extracted
relations, and relations can be extracted based on the predefined set of edge
types (relations) in a KG. Relations in a graph can have various properties, such as
a unique direction of the relation or mathematical properties like symmetry or transitivity.
Although we can say that Nazor wrote "Loda the Shepherd", the converse case cannot be
established, since it is impossible for a novel to write a person. This is obvious to the
reader, but it must be attended and clearly defined when it comes to the relations between
the entities in KG. In addition, other relations that are not explicitly stated in the sentences
can be automatically extracted from the graph using the knowledge graph completion (KGC)
procedure (e.g., Novel is a book. — "Loda the Shepherd" is a book).

RE datasets ( [36], [37], [38], [39], [24], [40]) often rely on the distant supervision technique
rather than the time- and resource-consuming but less noisy, human annotation. Distant
supervision makes use of an existing knowledge database (i.e., knowledge graph), such as
Freebase [41] or later Wikidata [42], to collect examples of relations of interest. That further
emphasizes the intertwine nature of KG and RE fields. Similarly, RE is often used to improve
KGs, as can be seen in the work of Pingle et al. [43] where RE is used for the improvement
of cybersecurity KG. Also, some researches, such as works of Yu et al. [44], Li et al. [45],
and Luan et al. [46] preview the implementation of relation extraction for KG construction.

3The definition of the knowledge graph is simplified in this paper to emphasize the common features of
KG and RE. For further exploration, the work of Hogan et al. [34] and Ji et al. [35] are suggested.

“In a restricted but very common sense of the term, a graph is an ordered pair G=(V,E) consisting of
a set of vertices V' (nodes) and a set of edges F (links, lines) that are unordered pairs of vertices (i.e. one
edge is connected to two distinct vertices).
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3 Neural networks

Neural networks consist of layers of artificial neurons. The inspiration for this design comes
from the neurons in the human brain, as described in the 1957 technical report [47] by F.
Rosenblatt. The Figure 3 shows the visual example of a simple neuron, a perceptron. A
perceptron has one or more inputs labelled z1, 2, ... , x;, and the corresponding weights
denoted by w1, wa, ... , wy,.

— —> QOorl

binary step function

Figure 3: Perceptron: Visual example of a simple artificial neuron, the Perceptron,
consisting of zy, z2, ... , =, inputs, corresponding weights wi, ws, ...
wy, and an activation function (here: binary step function). Adopted from:
https://ai.plainenglish.io /the-rise-and-fall-of-the-perceptron-c04ae53eal 65

Considering a set of inputs and the corresponding weights as vectors X and W,
respectively, we can define the output of the neuron as follows:
f(X) = ;
1, W-X+b>0

where function f(X) is called the activation function, and term b represents the threshold
or bias of a neuron. This simple neuron can only classify the data linearly, but with a
larger number of neurons stacked into layers and more complex and derivable activation
functions, we can solve complex, non-linear tasks. This simple idea incorporates the core of
neural networks. To limit the scope of this thesis, no further definitions of neural network
architectures (except basic transformer and BERT') are provided.
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3.1 Feedforward neural network

A feedforward network is a neural network with multiple layers, in its simplest form with an
input layer, a hidden layer, and an output layer. As the name implies, each layer receives
calculations (outputs) strictly from a previous layer, with the final output layer shaped for
a specific task, such as binary classification. Figure 4 shows an example of a feedforward
neural network, where each circle represents an artificial neuron similar to the neuron shown
in Figure 3.

Hidden
layer

Input
layer

Output
layer

Inputs
Outputs

Figure 4: Feedforward neural network: A simple feedforward NN
consisting of three layers, input, hidden, and output layer.  Adopted from:
https: / /www.researchgate.net/publication /234055177 Computational Methods _and_
Optimization/figures?lo=1

3.2 Residual connection

Residual connections or skip connections, a concept that gained great popularity after it
was introduced in the work of He at al. [48], is a widely used approach when dealing with
networks with a larger number of layers of artificial neurons (i.e., deep neural networks).
Skip connection mitigates the troubling problems of vanishing and exploding gradients by
connecting non-sequential layers of the network, creating multiple paths for the values to
pass. As pointed out by Veit et al. [49], "Residual networks avoid the vanishing gradient
problem by introducing short paths which can carry gradient throughout the extent of very
deep networks."
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4 Transformers

As stated in the introduction (Section 1), work of Vaswani et al. [14] quickly overtook the
NLP scene with the new architecture that is able to ingest and contextualize an unlimited
sequence length, minding the prominence of the enabling hardware underneath. As opposed
to previous state-of-the-art neural models for the majority of sequence-based NLP tasks,
mainly memory-enriched RNN architectures, such as long short-term memory (LSTM) [50]
and gated recurrent unit (GRU) [51] the transformer relies on attention mechanism only,
mitigating the need for the recurrent connections. Recurrent connections, due to their
sequential nature suffer from low parallelizability, limiting implementation at larger scales.
Transformers, on the other hand, do not suffer from the same problem.

Transformers are made of transformer blocks consisting of several layers, including a
simple linear layer, a feedforward network, and layers with self-attention. Self-attention
enables a neural network to extract and use information from an unbounded context while
maintaining the efficiency of processing non-sequential data.

4.1 Self-attention

The core concept of any attention mechanism is the ability to compare an item of interest
with all surrounding items to gain a sense of contextual importance. To gain such insight,
it is necessary to calculate the score for each item. Self-attention, discussed in this section,
is an attention mechanism that relates different items of a single sequence to compute a
representation of the sequence that reveals the relevance of a particular part of the sequence
in the given context. Let us first define a query, key, and value embedding;:

e Query - a current focus of attention that is being compared to all other
preceding inputs,

e Key - a preceding input being compared to the current focus of attention

(query),
e Value - a value used to compute the output for the current focus of attention
(query).
Each of these three different roles is associated with a weight matrix, W<, WX, and
WYV for query, key, and value, respectively. If we denote (21, 22, ... , T,) as the sequence of

input vectors (e.g., vector representations of the words), we can say that g;, k;, and v; are
role representations (query, key, value) of each of the input vectors:

q; = WQCL‘Z'; ki = Wz vy = WVa,.

The score between query (current focus of attention z;) and the key (element in the preceding
context x;) can be shown as:

score(x;, xj) = q; - kj.

The problem with this setup is that the dot product between ¢; and k; can take arbitrarily
large (positive or negative) values. To solve this problem, the scaled dot product is used,
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which incorporates the dimensionality of the query and key vectors (which have the same
size) into the calculation and scales the values as well. This approach is referred to as the
scaled dot-product approach in the literature.

score(x;, xj) = Gi by
(2] - .
J o
Similarly, in Section 3, where real-valued inputs x1, x2, ... , , can be represented by a single

vector to benefit from highly parallelizable vector multiplication, here real-valued vector
representations (e.g., of words) can be concatenated into a single matrix X, again benefiting
from matrix-matrix multiplication, which is easily parallelizable. Next, X is multiplied by
the above weight matrices (WQ, W, and WV) to produce the matrices Q, K, and V as
follows:

Q=XWe K=XWE, v=xWwV.

Multiplying the @ and KT matrices here yields all requisite query-key comparisons.
After some additional steps to ensure learnable parameters, we obtain the final equation for
computing self-attention:

Sel f Attention(Q, K, V) = softmax <QKT> \%
Y 9y \/@ *
When it comes to language modeling (i.e., predicting the next word in the sentence), it is
not desirable to include words to be predicted in comparison, i.e., if we want to train the
model to predict the next word based on this approach, the current query should not be
compared to "future" words. To solve this issue, the QKT matrix in the upper right triangle
is set to zero, effectively denying information about the next word in the sentence. On the
other hand, Devlin et al. [18] tackle the task of language modeling with an entirely new
approach called masked language modeling. Masked language modeling and BERT are
discussed in the following sections. To explore the transformer architecture (e.g., multi-head
attention and transformer block) in more detail, the reader is advised to read the original
work on transformers [14] and the literature used for this work, mainly [52| and [53].

4.2 BERT

When discussing language modeling for further use on downstream tasks, i.e. fine-tuning the
pretrained language model, it is important to find the right objective for language modeling.
In this light, Devlin et al. with "BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding" [18] point out the shortcomings of left-to-right language
modeling®, such as work of Radford et al. [54]. The next paragraph briefly introduces
transformer architecture and its connection with Generative pretrained transformer (GPT)
and BERT models.

Transformer architecture, presented in the Figure 5, was originally implemented on the
task of machine translation. When translating sentences, it is expected to have different

SLeft-to-right language modeling objective is a task where an LM is trained to predict the next part of
the sequence, given the previous parts (shortly discussed in Section 4)
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lengths of sentences and unaligned words in the source language and target language.
Machine translation is standardly tackled as a sequence-to-sequence (seq2seq) problem where
the standard approach is the encoder-decoder architecture. Encoder-decoder consists of two
main parts, an encoder that takes a variable-length input extracting useful information
(features) that are then used as an input to decoder that conditioned on the encoded input
through self-attention produces a variable-length output.

QOutput
Probabilities
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Multi-Head
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Encoder Decoder
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Multi-Head
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Figure 5: Transformer architecture: Architecture design used in the work of
Vaswani et al. [14], consisting of a encoder and a decoder part, from which two
models, BERT and GPT stem respectively. Adopted from work of Niklas Heidloff:
https://heidloff.net/article/foundation-models-transformers-bert-and-gpt/

As shown in Figure 5, depicting original transformer encoder-decoder architecture, two
famous models were created based on this architecture, the encoder only BERT [18] and
the pure decoder GPT [54]. To abbreviate the topic, only the encoder of the transformer
architecture is discussed. The encoder of a transformer consists of an arbitrary number of
encoder blocks. FEach encoder block starts with a self-attention layer, more specifically a
multi-head self-attention that further facilitates the ability to encode multiple relationships
and nuances for each part of the input, i.e., token®. The output of the multi-head
self-attention then proceeds through position-wise feed-forward network (FFN) consisting
of a linear layer, ReLU, and another linear layer. After each of the steps (multi-head
self-attention and position-wise FFN), the residual connection is added along with the layer
normalization. Figure 6 shows an encoder block previously described.

Following the original work of Vaswani et al. [14], BERT retains the encoder architecture
with variations in the number of encoder blocks (L), hidden size (H), and self-attention
heads (A). In the work, two main variants of BERT are presented: BERTp4sr (L=12,
H=768, A=12) and BERT arcr (L=24, H=1024, A=16), the prior of which is used

5Token can be considered as a useful semantic unit for processing, common tokens are subword, word,
and sentence tokens.
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Figure 6: Transformer encoder block: Architecture used as an encoder originally

in work of Vaswani et al. [14] and later in work of Devlin et al. [18]. Adopted from:
https:/ /kikaben.com/transformers-encoder-decoder/

in this thesis. To enable BERT to handle a variety of downstream tasks, such as text
classification, relation extraction, sentiment analysis, and question answering, two special
tokens are used in the input and output representations:

e [CLS| token - First token of every sequence. The final hidden state
corresponding to this token is used as aggregate sequence representation for
classification tasks.

e [SEP]| token - Sentence separator, in case the input consists of two sentences,
e.g. for question answering task.

For further detail on the input and output representation of BERT models, the reader is
advised to read the work of Devlin et al. [18].

Authors split BERT pretraining into two separate tasks, masked language modeling
(MLM) and next sentence prediction (NSP). As argued by authors, it is possible to gain
more useful information, i.e. get better-contextualized representations when a single token
is contextualized by the rest of the sequence (sentence), as compared to left-to-right or right-
to-left model”. It is not desirable for a standard LM to attend to "future" tokens (words)
in the sentence, as the training for predicting the next word in the sentence becomes trivial,
as previously discussed in Section 4.1. In this light, Devlin et al. propose a new objective,
that hides (masks) only a single part of the sequence that needs to be predicted, calling it

" Models where every token can only attend to previous tokens in the self-attention layers of the
Transformer" - [18]
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MLM (masked language model)®.
BERT model was pretrained on BookCorpus [55] and English Wikipedia.

4.3 SciBERT

Following the same design as above, Beltagy et al. [56] train the BERT model on scientific
corpora to support further scientific-based use-cases. Of multiple pretrained models yielded
in this work, the SciBERT with new SciVocab? WordPiece vocabulary uncased is used. New
models that underwent pretraining were trained on random sample of 1.14M papers
from Semantic Scholar [57].

8To mitigate the problems regarding special [MASK] token that does not appear during fine-tuning of
the LM, extra steps in the objective are added.
90riginal BERT uses WordPiece-based [12] vocabulary consisting of 30,000 tokens.
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5 Datasets

In this Section, the datasets that were used to train the BERT and SciBERT models to
classify relations are introduced. First, each of the datasets is defined and an example is
provided, then the work of Shimorina et al. [58| is presented. Based on this work, the new
dataset (combo160) is constructed, containing the relations of interest. Combol60 dateset

is created through filtering and preprocessing aimed to use for training of relation extraction
task with the OpenNRE [20] toolkit.

5.1 FewRel Dataset

Few-Shot Relation Classification Dataset (FewRel) by Han et al. [36] consists of 100 distinct
relations, each accompanied by 700 instances. FewRel is created with the use of Wikipedia
articles and Wikidata as a text corpus and the knowledge base'® respectively. After the
gathering of initial dataset through distant supervision, totaling in 122 relations and 122,000
instances, the dataset underwent human annotation filtering resulting in mentioned 70,000
instances. A full list of relations, including their names and descriptions is available in the
Appendix!! of the paper. In Table2 below the examples of the FewRel data are listed:

ID ‘ tokens ‘ h ‘ t

P26 | [His, parents, are, Karl, von, | "francescavon | "karl  von
Habsburg, and, Francesca, von, | habsburg", habsburg",
Habsburg, .| Q1276954 Q78515,

[[7, 8, 9| 113, 4, 5]

P25 | [Emmy, Acht\u00e9, was, the, | "aino "emmy
mother, of, the, internationally, | ackt\u00e9", acht\u00e9",
famous, opera, singers, Aino, | 259161, Q4933685,
Ackt\u00e9, and, Irma, Tervani, .| | [[11, 12]| ([0, 1]]

Table 2: FewRel examples: Head (h) and tail (t) are used interchangeably with
subject and object annotation.

ID here stands for the unique property (relation) in Wikidata (e.g., P26 represents the
"spouse" relation between two entities), it is followed by the tokenized sentence, after which
the details of head and tail'? entities are given, i.e., surface form'3
indexes referring to the tokenized list.

, unique item ID, and

Terms Knowledge Base (KB) and Knowledge Graph (KG) are often used interchangeably due to
inconsistent or loose definitions.

'Not public due to details on the test data used for online evaluation. Available at:
https://github.com /thunlp /FewRel /blob /master/data/pid2name.json

12Subject and object entities are sometimes considered head and tail entities in the literature.

13 A raw, textual representation of an entity.
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5.2 T-REx Dataset

Elsahar et al. [37] in "T-REz: A Large Scale Alignment of Natural Language with Knowledge
Base Triples" address the problem of small RE datasets by utilizing Wikidata'4 and DBpedia
[59], a dataset consisting of Wikipedia abstracts, to form a new dataset called T-REx. T-
REx contains 11 million triple alignments from 6.2 million sentences. In this case, the
triple alignment refers to the process of mapping the extracted entities from the natural
language sentence with the triple in KG or KB, to form a distantly supervised training
instance. For brevity, the examples from the T-REx dataset are not included.

5.3 DocRED Dataset

Compared to the previous two datasets, which were primarily developed for extracting
sentence-level (intra-sentence) relations, Yao et al. [38] create a DocRED dataset for
extracting document-level (inter-sentence) relations. DocRED is based on a similar design
to T-REx and FewRel, in that the main and only data source is the aforementioned
combination of Wikidata and Wikipedia abstracts through distant supervision. It is
important to note that the tedious process of human annotation of part of the data
using crowdsourcing has made a significant contribution to the field. The result is 5,053
human-annotated documents with 40,276 sentences and a total of 96 distinct relations
and a large distantly supervised dataset of 101,873 documents with 828,115 sentences.

5.4 WikiFact Dataset

Goodrich et al. [39] explore new metrics for evaluating the factual accuracy of the generated
text, primarily for the RE task. Similar to the previously presented datasets, under the
distant supervision assumption [60], a new dataset based on Wikidata and Wikipedia,
WikiFact, is created. WikiFact consists of two distinct parts based on the training objective,
data for the relation classifier (relation extraction) and data for fact extraction (paragraph
and sentence based). In this work, only the data for RE is used, which is 13 GB in total.
Table 3 previews examples from the WikiFact dataset. Compared to the structure of the
data in FewRel2, the authors mark the entities in untokenized sentences, which leaves room
for task-specific preprocessing.

target‘ inputs ‘ subject ‘ object
PO SUBJ{Art Nalls} was born in 1954 in | Art Alexan-
OBJ{Alexandria}, Virginia just outside | Nalls dria
Washington, D.C. and grew up in that area.
PO SUBJ{Cerner} and executives at Girard | Cerner | implem-
agreed that Girard did not have adequate
staff to manage the acquisition and entation
OBJ{implementation} of the system.

Table 3: WikiFact examples: Inputs (sentences) have annotated subject (SUBJ{ })
and object (OBJ{ }) spans.

Yhttps: //www.wikidata.org/
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5.5 Wiki20m Dataset

Comparable to the previously covered datasets, Wiki20m [24] utilizes distant supervision via
Wikipedia and Wikidata. Wiki20 is originally constructed for bag-level relation extraction,
a task that aims to spread relation extraction on multiple sentences (i.e. bag of sentences).
Wiki20m is the version of Wiki20 with a manually annotated test set. Each instance in the
dataset resembles the structure of FewRel with tokenized sentence, head and tail data, and
relation label.

5.6 WebRED Dataset

In "WebRED: Effective Pretraining And Finetuning For Relation FExtraction On The
Web" [40] Ormandi et al. point out generalization problems that concern Wikipedia-
Wikidata!® trained models, since the text on Wikipedia follows a certain structure and
certain constraints. To mitigate generalization problems, a set of web domains with high
linguistic quality and factually correct content were ranked by human annotators. From
the selected web domains, the large corpus was created and linked to Wikidata triples in a
process similar to previous datasets. Then, the part of the data was subjected to a human
annotation process similar to DocRED. The result is a two-part dataset with 523 unique
(Wikidata) relations, with the 117,717 human annotated and 199,786,781 weakly
supervised examples.

5.7 Relation Extraction Database Based on Wikidata

While the datasets presented were created for seemingly different tasks, they share the
knowledge base for defining and extracting relations, Wikidata. With this property in
mind, Shimorina et al. [58| design a sentence-level RE database based on the aforementioned
datasets (FewRel, T-REx, DocRED, WikiFact, Wiki20m, WebRED). First, the datasets are
preprocessed, including deduplication and extraction of designated entities from unwanted
formats. Then, the instances (sentences) or rather, relations are labeled in a uniform
way, where OBJ and SUBJ represent the entities involved in a given relation. Results
are 47,390,557 instances across 1,022 unique relations, including "P0" (no relation)
and "NA" (unknown relation).

15Relation extraction datasets constructed from Wikipedia and Wikidata through distant supervision.
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6 Experimental setup

6.1 Combol60 Dataset

Since this work is concerned with the scientific domain, it is desirable to train the models
on data that exhibit scientific relationships. To obtain such relations, the Wikidata list
of properties in the science domain'® was examined. Particular attention was paid to
relations in chemistry, physics, biology, mathematics, geology, and astronomy, resulting
in 341 applicable relations (see Appendix A). Based on these relations, the database created
by Shimorina et al. [58] was queried to filter out the ones of interest, resulting in a new
dataset with 176 relations. The number of instances for each relation is limited to 10,000 to
prevent further increase in disproportionality of the data, since the majority of the examples
(66%) belong to the classes "P0" (no relation) and "NA" (unknown relation).

The combol60 dataset is then exported to csv format for further preprocessing using
python with appropriate libraries (pandas [61,62], scikit-learn [63]). First, the empty values
and notation SUBJ and OBJ are cleaned up in the records. Clean sentences are then
tokenized using the BasicTokenizer implemented in OpenNRE to make the input conform to
the Toolkit standards. Following tokenization, low frequency relations (less than 3 times) are
removed to allow splitting between training, test, and validation, with each relation occurring
at least once per set. Using scikit-learn function train_test_split() with stratification
based on relation ID (e.g., P1234), the dataset is split into 80:15:5 ratio to train, test, and
validation subsets respectively. After the preprocessing, the dataset is left with 161 unique
relations (Appendix B), with 301,062 examples in total. Hence we name the dataset
combo160. In the Table 4 below, summary of datasets information is given with respect to
the work of Shimorina et al [58] 7.

dataset ‘ # instances # R ‘ % neg.
FewRel 56,000 80 0%
T-REx 12,081,023 652 0%
DocRED 778,914 96 0%
WikiFact 33,628,338 934 92%
Wiki20m 738,463 81 60%
WebRED 107,819 385 54%
Unified database 47,390,557 1,022 66%
Combo160 301,062 161 6.6%

Table 4: Dataset summary: with the number of instances, the number of relations,
and negative relations.

Table 4 shows the total number of instances (# instances), relations (# R), and percentage
of negative relations (% neg.) in each of the datasets. Relations "P0" (no relation) and
"NA" (unknown relation) are considered negative in this context. Negative examples can
be excluded if a binary classification (yes/no relation between entities) is performed before

Yhttps: //www.wikidata.org/wiki/Wikidata:List of properties/science
"Dataset statistics presented in Table 4 refer to sentence-level RE and are calculated after preprocessing
procedures, such as deduplication.
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relation classification (RC). Essentially, the RE is further divided into two approaches: the
first, binary classification before RC and the second, RC with the classes "no relation"
and/or "unknown" relation classes. This work treats "P0" and "NA" as regular relations
although, usually, most entity co-occurrences are either undefined or not-relation, which is
the main rationale behind high percentage of negative examples in datasets such as WikiFact,
Wiki20m, WebRED and the unified database [58]. The exploration of the impact of the
negative examples ratio is left for future work.

6.2 OpenNRE toolkit

OpenNRE is an open source and extensible toolkit that provides a unified framework
for implementing relation extraction models, introduced with the work of Han et al. [20]
"OpenNRE: An Open and Eztensible Toolkit for Neural Relation Extraction". The authors
point out the need for such a toolkit because most research on RE implements its work
for a specific setup, making the comparison, re-implementation, variation, deployment,
and evaluation a relatively difficult task. The authors also address the problem of code
reusability by providing extensible base implementations for most tasks that precede or
follow RE, such as tokenization (word and subword level), common neural layers, encoder
module, data processing, model training and evaluation. OpenNRE also allows 3 approaches
to RE:

e Sentence-level RE (RE from sentence, i.e. only the existence of relations
inside a single sentence is assumed),

e Bag-level RE (RE from multiple sentences, i.e. relations can exist across
multiple sentences that appear consecutively),

e Document-level RE (RE from the whole document).

In this work, OpenNRE is used due to its extensibility and ease of use, as the toolkit
contains a complete procedure for training the BERT model for RE following the work of
Soares et al. [64].

6.3 Training Setup

Soares et al. with "Matching the Blanks: Distributional Similarity for Relation Learning"
investigate the capabilities of BERT in extracting relations (classification) and then train
the BERT model on new objective specifically designed to capture relation representation,
named matching the blanks (MTB). In this work, we investigate one of the presented relation
classification fine-tuning procedures. Let us first define a sequence of tokens (x), e.g. words,
as ¢ = [xg, 1, ..., Tn|, where, similarly to original setup, g = [CLS] and z,, = [SEP] are
special start and end markers. Moreover, let s = (7,7) and s2 = (k,[) be pairs of integers
such that 0 < i < j—1,j < k,k <1 —1, and | < n. Here, relation (r) is represented as
r = (z, s1, s2), where s; represents the entity mentions in the sentence.

In this thesis, BERT models are fine-tuned for RC with entity marker tokens that
incorporate s; and so entity spans into the input via special tokens: [Elgert], [Elendl,
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[E2st0rt], and [E2¢p4]. Resulting in an augmented sequence (Z) as:
i. - [1.07 ceey [Elstart]y Ly enny ‘Tj—17 [Elend]a seey [EQSta’I‘thk; ey -1, [Ezend]v weey xn] .

Let us preview this in the exemplary sentence:
If sentence (x) is:

T = [he, is, seen, as, one, of,the, founders, of, modern, archeology,in, czech,lands, ”.”];
and entity spans s; and so are:

s1 = (0,0) and s = (10,10);
then augmented sentence (Z) is:

7=
[[Elsmrt], he,[Elend), is, ..., modern, [E2stqrt], archeology, [E2end], in, czech, lands, ”.”].

With this set-up, two models are fine-tuned with the combol60 dataset on the RC task
with parameters set up as elaborated in Table 5. To enable training for the task of
multi-label classification, outputs of the encoders (BERT and SciBERT) are forwarded to a
neural network consisting of a linear layer, dropout layer, and softmax layer to output the
probability distribution over the number of classes.

Model BERT}p,se uncased / SciBERT SciVocab uncased
Dataset Combo160

Pooler Entity

Entity masker No

Batch size 8

Learning rate 2e-5

Maximum length 128

Maximum epochs 3

Seed 42

Optimizer Adamw [65]

Table 5: Training parameters set-up

Each of the two models (BERT and SciBERT) was trained for 3 epochs with a total of ~
12 hours of training on an Ubuntu 20.04 machine with a single NVIDIA GeForce GTX 1050
Mobile (3GB) GPU and Intel Core i7-7700HQ CPU. The results of both BERT}4s uncased
and SciBERT SciVocab uncased models are compared following an identical training set-up
to support the arguments discussed. It is important to note that BERT,s. and SciBERT
have the same architecture and differ only in the corpora used to pretrain the model.
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7 Results

In this Section, the results of the thesis are presented. First, the inference of two models
(BERT and SciBERT) is evaluated with standard multiclass classification metrics such as
accuracy, precision and F1l-score with micro and macro averaging. Then, the significance of
the results is discussed and concluded with examples of the raw unannotated data.

Let us first consider the distribution of relations in the training data (Figure 7) and
the test data (Figure 8). Comparing the top 20 relations (by the number of instances)
in both datasets, we obtain a significant overlap with a difference in one relation P706
(in train) versus P279 (in test). The top 20 include relations such as: location (P276),
father (P22), sibling (P3373), instance of (P31), located in the administrative territorial
entity (P131), owned by (P127), field of work (P101), and of course the negative classes
unknown (NA /PNAN) and no relation (P0). The above relations portray general terms
rather than relations that are characteristic of scientific work. On the other hand, relations
such as chromosome (P1057), monomer of (P4599), pathogen transmission process (P1060),
lymphatic drainage (P2288), research site (P6153), decreased expression in (P1910), and
inflorescence (P3739), which might be considered more prone to scientific work, appear in
the bottom 20 places (by occurrence). Arguably, it is expected to have a higher overall
occurrence of "general" relations, compared to "scientific domain" relations in the dataset
constructed mainly from Wikipedia!®.

With this in mind, we move on to the results of two models reported in Table 6.

| BERT | SciBERT

Accuracy 0.998925725881054 0.9987707454750053
Micro precision 0.9236978621443692 | 0.914232253537598
Micro recall 0.9093136693613025 | 0.8951382050518698
Micro F1-score 0.9164493272093612 | 0.9045844808034992
Macro precision 0.7452305633653035 0.7744999417648366
Macro recall 0.7015722908580357 0.7263660522886056
Macro F1-score 0.7164054666737936 0.7411929693031761

Table 6: The results for BERT and SciBERT: in terms of accuracy, micro and
macro averaged precision, recall and F1-score.

The first metric discussed, accuracy, yields somewhat similar results, with a performance
difference of 1.54980406 - 10~% in favor of BERT. If we revisit the definition of accuracy
(Section 2.1.1), it becomes clear that this metric only rewards correct predictions and
attenuates the proportion of correctness per class. While intuitive, this metric yields biased
results when the dataset is unbalanced, as is the case with Combol60 (Figures 7 and 8).
Meaning, the model that more accurately predicts dominant classes (presumably BERT)
could have a better result as rated by the accuracy metric.

To discuss the matter further, let us explore micro and macro averaging in greater
depth. According to Grandini et al. [32] the idea of micro-averaging is to consider all the
units together, without considering disproportion between classes.

18Reader is advised to explore Appendices B and C containing further information on relations in the
dataset.
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Figure 7: Relation distribution in train data
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Figure 8: Relation distribution in test data

Similar to accuracy, BERT shows negligibly better performance in micro-averaged
precision with 9.465608607 - 10~3 advantage. This advantage is also to be expected since
micro-averaging first sums all units, i.e., TP and FP, and then calculates precision based
on the sums, again neglecting the inequality of classes in the dataset. The comparison
of micro-averaged recall yields similar results with a more significant advantage of
1.417546431 - 1072 in the performance of BERT. Micro F1l-score, as a harmonic mean
between (micro) precision and recall, gives a better assessment of the overall performance
of the model than the two previously mentioned metrics. Looking at the results of micro
Fl-score, a repeating trend is seen when discussing micro-averaged metrics, with BERT
performing with a lead of 1.186484641 - 102, Thus, based on the micro-averaged
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metrics, it can be concluded that BERT performs better with the more
dominant classes as compared to SciBERT.

Looking at the macro-averaged metrics, there is a significant decline in performance
scores in general. This behaviour can be explained by the unbalanced dataset, as macro-
averaged metrics tend to neglect the correlation between class size and overall scores [32].
This means that macro-averaged metrics, by virtue of their calculations, have the great
side effect of giving equal importance to each class (regardless of the number of instances
in the class). Let us now consider the macro-averaged scores of the models. A significant
difference is found when comparing macro precision of two models, as SciIBERT scores
2.92693784 - 1072 better here. This means that the SciBERT model classifies the relations
more confidently. Comparable results are also manifested in the macro recall and macro
F1-score.

Two important conclusions can be drawn from the analysis of the provided metrics
measured on SciBERT and BERT models in classifying relations:

e The BERT model performs better on more dominant classes overall
(better results on micro-averaged metrics and accuracy) and,
in particular, correctly classifies examples of dominant relations
(greater macro recall).

e The SciBERT model is competitive with BERT when it comes to
more dominant relations, and shows better results on less dominant
classes (better overall results on macro-averaged metrics).

As noted at the beginning of this section, the dominant (frequent) relations tend to
be more "general", while the less dominant (infrequent) relations tend to be more
"scientific". Given this, it can be concluded that SciBERT performs better when
presented with relations from the scientific domain.
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8 Conclusion

This master thesis first introduces the field of NLP with its history and the NLP task,
relation extraction. Relation extraction, as a subtask of information extraction, attempts
to automatically extract the relations between actors in the form of a triple (subject, relation,
object) from texts. This thesis is concerned with the training (fine-tuning) of sentence-
level relation extraction models, focusing mainly on relation classification as a multi-class
classification problem. For this task, the pretrained transformer-encoder models BERT and
SciBERT are used and compared to observe the effects of the pretrained corpora.

Throughout the thesis, the reader is introduced to basic concepts related to neural
networks (NN), transformer architecture, pretraining, language modeling, and masked
language modeling (MLM). Relevant datasets suitable for the task are explored and
experimented with, culminating in the construction of a new dataset, combol160. Two
models, SciBERT and BERT, are then trained on this newly constructed dataset with 161
relation types - combo160.

Finally, the results of the two models are presented and compared in order to draw
conclusions about the pretraining corpora used. This work tests the hypothesis: "Will
the SciBERT model perform better than the BERT model on the relation
extraction task on scientific corpora?". Using relevant metrics for classification tasks,
such as accuracy and (micro- and macro-) averaged precision, recall and Fl-score, it is
shown that BERT performs marginally better on accuracy and micro-averaged metrics.
This implies better performance on more dominant classes (which turn out to be less
"scientific domain" and more "general"), while SciBERT model outperforms the
BERT model when it comes to relations specific to the scientific domain, implied
by better results on the macro-averaged metrics that account for class disproportions in the
calculation. To conclude, we list two important contributions of this work:

e Creation (selection) of the new scientifically oriented dataset useful for further
benchmarks on reletion extraction- combo160;

e Two models (BERT and SciBERT) fine-tuned for RE available for use through
OpenNRE toolkit [20];

To further support the conclusion, the issue of defining the term "scientific" relationship
needs to be addressed in more detail. In addition, other models with different pretraining
objectives and architectures should be explored and evaluated against the combol60
dataset. The sole dataset, combol60, should be further analyzed to reduce and find the
optimal and necessary number of relations. This and the study of the effects of relation
distribution (especially negative relations) are the subject of future work.
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Appendices

A List of desired relations
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P5095 P5131 P5132 P5133 P5134 P5135 P5136 P514 P515 P5166 P517 P522 P523 P5236
P524 P5248 P527 P5304 P534 P537 P538 P5386 P5446 P556 P5572 P5588 P5589 P5607
P5642 P565 P566 P567 P568 P579 P5841 P589 P59 P6099 P61 P6153 P6185 P6212 P6259
P629 P636 P65 P660 P680 P6803 P681 P682 P684 P6855 P6875 P688 P6884 P689 P690
P693 P694 P697 P702 P703 P706 P720 P7309 P744 P7442 P7479 P7500 P7582 P7603 P769
P770 P780 P783 P784 P785 P786 P787 P788 P789 P8005 P8026 P8045 P816 P8193 P8194
P828 P8324 P8329 P8339 P8363 P8403 P8450 P8459 P859 P873 P8789 P881 P8824 P8&64
P8865 P8866 P8872 P9030 P9072 P913 P922 P923 P9235 P924 P925 P926 P927 P9275 P928
P9353 P944 P9566 P970 P9714 P9745 P9831 P9888 P9977

B Relations in combol160
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RID name RID name
P279 subclass of P556 crystal system
P22 father P3179 territory overlaps
P105 taxon rank P636 route of administration
P61 discoverer or inventor P2695 type locality (geology)
P137 operator P2384 statement describes
P366 use P3780 active ingredient in
NA unknown P427 taxonomic type
P403 mouth of the watercourse P3094 develops from
P706 located on terrain feature P3491 muscle insertion
P59 constellation P780 symptoms
P361 part of P769 significant drug interaction
P171 parent taxon P703 found in taxon
P3373 sibling P1479 has contributing factor
P398 child astronomical body P568 overlies
P922 magnetic ordering P816 decays to
P127 owned by P1990 species kept
P65 site of astronomical discovery P926 postsynaptic connection
P131 located in the administrative territorial P1851 input set

entity
P179 part of the series P720 asteroid spectral type
P1889 different from P744 asteroid family
P527 has part P2152 antiparticle
P2175 medical condition treated P1531 "parent of this hybrid
P460 said to be the same as P514 interleaves with
P397 parent astronomical body P3262 has anatomical branch
P1995 health specialty P1074 fictional analog of
P276 location P522 type of orbit
P2597 Gram staining P2839 gait
P461 opposite of P3261 anatomical branch of
P2176 drug used for treatment P702 encoded by
PO no_relation P523 temporal range start
P31 instance of P376 located on astronomical location
P126 maintained by P684 ortholog
P1605 has natural reservoir P567 underlies
P466 occupant P924 possible treatment
P629 edition or translation of P128 regulates (molecular biology)
P2959 permanent duplicated item P399 companion of
P101 field of work P923 medical examinations
P2094 competition class P517 interaction
P4552 mountain range P2974 habitat
P121 item operated P2575 measures
P789 edibility P2289 venous drainage
P129 physically interacts with P783 hymenium type
P688 encodes P3205 patient of
P2329 antagonist muscle P3190 innervates
P183 endemic to P4743 animal breed
P3403 coextensive with P3815 volcano observatory
P414 stock exchange P2743 this zoological name is coordinate with
P1542 has effect P1571 codomain
P1582 natural product of taxon P2414 substrate of
P196 minor planet group P1057 chromosome
P376 located on astronomical body P2159 computes solution to
P3189 innervated by P913 notation
P1050 medical condition P1678 has vertex figure
P2789 connects with P3490 muscle origin
P828 has cause P2293 genetic association
P1830 owner of P5135 greater than
P1924 vaccine for P2288 lymphatic drainage
P88l type of variable star P1916 gene substitution association with
P141 IUCN conservation status P4599 monomer of
P2283 uses P3512 means of locomotion
P2155 solid solution series with P1910 decreased expression in
P1672 this taxon is source of P2375 has superpartner
P859 sponsor P1046 discovery method
P1322 dual to P928 activating neurotransmitter
P1420 taxon synonym P4600 polymer of
P770 cause of destruction P566 basionym
P3137 parent peak P944 Code of nomenclature
P524 temporal range end P2975 host
P2849 produced by P1403 original combination
P689 afflicts P5642 risk factor
P681 cell component P1060 pathogen transmission process
P927 anatomical location P3263 base
P1535 used by P4000 has fruit type
P2286 arterial supply P2376 superpartner of
P682 biological process P534 streak color
P1478 has immediate cause P6153 research site
P788 mushroom ecological type P538 fracturing
P1312 has facet polytope P1137 fossil found in this unit
P1382 partially coincident with P3739 inflorescence
P3781 has active ingredient P515 phase of matter
P1568 definition domain

Table 7: Combo160 relations
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C Relation counts in combo160

RID [ Train Test H RID Train Test H RID Train Test
PNAN 8000 1500 P4599 4 1 P2175 1454 273
P944 8 1 P4552 7170 1345 P2159 24 5
P928 8 1 P427 332 62 P2155 82 15
P927 507 95 P414 2458 461 P2152 43 8
P926 11 2 P403 8000 1500 P2094 4218 791
P924 32 6 P4000 5 1 P1995 979 184
P923 59 11 P399 8 1 P1990 66 12
P922 25 5 P398 4990 936 P196 445 83
P913 34 6 P397 5402 1013 P1924 47 9
P88l 90 17 P3815 28 5 P1916 30 5
P859 452 85 P3781 1 2 P1910 6 1
P828 1758 329 P3780 55 11 P1889 4545 852
P816 90 17 P376 2253 423 P1851 27 5
P789 38 8 P3739 3 1 P1830 633 119
P788 55 11 P366 3968 744 P183 1249 234
P783 11 2 P361 8000 1500 P179 8000 1500
P780 277 52 P3512 9 1 P171 8000 1500
P770 174 33 P3491 46 8 P1678 29 5
P769 69 13 P3490 15 3 P1672 1258 236
P744 38 7 P3403 402 76 P1605 40 8
P720 136 26 P3373 8000 1500 P1582 1250 235
P706 8000 1500 P3263 5 1 P1571 14 2
P703 64 12 P3262 45 8 P1568 1 1
P702 34 6 P3261 47 9 P1542 1858 349
P689 385 72 P3205 12 2 P1535 525 98
P688 147 28 P3190 78 14 P1531 44 8
P684 48 9 P3189 81 15 P1479 90 17
P682 507 95 P3179 34 7 P1478 84 16
P681 469 88 P3137 418 78 P1420 82 15
P65 672 126 P31 8000 1500 P141 1210 227
P636 39 8 P3094 58 11 P1403 5 2
P629 297 56 P2975 5 1 P1382 82 15
P6153 2 2 P2974 24 5 P137 8000 1500
P61 3533 662 P2959 61 11 P1322 117 22
P59 3589 673 P2849 62 11 P1312 158 30
P568 98 18 P2839 33 6 P131 8000 1500
P567 99 19 P279 8000 1500 P129 946 178
P566 10 1 P2789 1450 272 P128 37 7
P5642 3 1 P276 8000 1500 P127 8000 1500
P556 217 41 P2743 72 14 P126 851 160
P538 1 1 P2695 85 16 P121 1456 273
P534 1 2 P2597 1770 332 P1137 1 1
P527 8000 1500 P2575 40 8 P1074 51 10
P524 96 18 P2414 30 5 P1060 3 2
P523 117 22 P2384 17 3 P1057 6 1
P522 123 23 P2376 5 2 P1050 841 158
P517 98 18 P2375 5 1 P105 8000 1500
P515 1 1 P2329 39 8 P1046 11 2
P514 7 1 P2293 54 11 P101 8000 1500
P5135 10 2 P2289 42 8 PO 8000 1500
P4743 24 5 P2288 4 1

P466 8000 1500 P2286 84 16

P461 8000 1500 P2283 460 86

P4600 9 2 P22 8000 1500

P460 8000 1500 P2176 1092 205

Table 8: Combol60 relations train-test counts
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