
Primjena velikih jezičnih modela u kreiranju
personaliziranih planova putovanja temeljenih na
činjenicama

Tajz, Sven

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Rijeka / Sveučilište u Rijeci

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:195:837071

Rights / Prava: Attribution-ShareAlike 4.0 International / Imenovanje-Dijeli pod istim uvjetima 4.0
međunarodna

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of
Informatics and Digital Technologies - INFORI
Repository

https://urn.nsk.hr/urn:nbn:hr:195:837071
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://zir.nsk.hr/islandora/object/infri:1314
https://www.unirepository.svkri.uniri.hr/islandora/object/infri:1314
https://dabar.srce.hr/islandora/object/infri:1314

Sveučilišni diplomski studij Informatika

Sven Tajz

Primjena velikih jezičnih modela u kreiranju personaliziranih

planova putovanja temeljenih na činjenicama

Diplomski rad

Mentor: Prof. dr. sc. Sanda Martinčić-Ipšić

Rijeka, rujan, 2024.

Sažetak

Ovaj magistarski rad, istražuje razvoj i implementaciju inteligentnog asistenta dizajniranog za

poboljšanje korisničkog iskustva putovanja kroz integraciju naprednih tehnika obrade

prirodnog jezika. Osnovni fokus ovog istraživanja je korištenje „Retrieval augmented

generation “(RAG) tehnike u kombinaciji s velikim jezičnim modelima (LLM) kako bi se u

odgovor uključile točne informacije potkrijepljene na pronađenim činjenicama.

Rad započinje raspravom o ključnim konceptima koji su ključni za razumijevanje tehnologije

koja stoji iza asistenta, uključujući velike jezične modele, problem halucinacije, RAG,

vektorske ugradnje i vektorske baze podataka, također pruža sveobuhvatan pregled postojećih

aplikacija koje koriste RAG ekstenzije.

U poglavlju o tehnologiji, rad detaljno opisuje komponente i alate korištene u projektu, kao što

su TravelTalk, WikiTravel, LangChain, PineCone i FastAPI. Metodologija opisuje razvijen

postupak korak-po-korak, počevši od prikupljanja podataka s interneta i pripreme podataka,

umetanja i ažuriranja vektora u vektorsku bazu podataka, do povezivanja OpenAI API-ja s

vektorskom bazom podataka za pohranu i pretraživanje činjenica, te konačno, razvoja i

integracije API-ja s frontend aplikacijom.

Rezultati implementacije pokazuju učinkovitost personaliziranog putnog asistenta u pružanju

korisnicima prilagođenih putnih preporuka i informacija. Rad zaključuje analizom rezultata

projekta, potencijalnim poboljšanjima i budućim smjerovima za unaprjeđenje mogućnosti

asistenta. Ovaj rad doprinosi području AI-pokretanih putnih asistenata prikazujući praktičnu

primjenu LLM-a i RAG-a, nudeći uvide u tehnička rješenja potrebna za budući razvoj

personaliziranih AI rješenja.

Ključne riječi: LLM, RAG, Hallucinations, Vector embedding, Vector Database, ChatGPT,

Chunking, VueJS, NodeJS, Prompt engineering

Abstract

This master's thesis explores the development and implementation of an intelligent travel

assistant designed to enhance user travel experiences through the integration of advanced

natural language processing techniques. The core focus of this research is the utilization of

Retrieval-Augmented Generation (RAG) technique combined with large language models

(LLMs) to deliver accurate, contextually relevant information and recommendations.

The thesis begins by discussing key concepts crucial to understanding the technology behind

the travel assistant, including large language models, the hallucination problem, RAG, vector

embeddings, and vector databases. It provides a overview of existing applications that utilize

RAG extensions currently.

In the technology section, the thesis elaborates the components and tools used in the proposed

solution, such as TravelTalk, WikiTravel, LangChain, PineCone, and FastAPI. The

methodology outlines the step-by-step process, starting from web scraping and data

preparation, embedding and upserting (Pinecone terminology used for simultaneous inserting

and updating) vectors into a vector database, to connect the OpenAI API to the vector database

for retrieval, and finally, developing and integrating an API with a frontend application.

Results from the implementation demonstrate the effectiveness of the personalized travel

assistant in providing users with tailored travel recommendations and information. The thesis

concludes with an analysis of the project's outcomes, potential improvements, and future

directions for enhancing the assistant's capabilities. This thesis contributes to the field of AI-

driven travel assistance by showcasing the practical application of LLMs and RAG, offering

valuable insights for future developments in personalized AI solutions.

Key words: LLM, RAG, Hallucinations, Vector embedding, Vector Database, ChatGPT,

Chunking, VueJS, NodeJS, Prompt engineering

Table of contents

1. Introduction 1

2. Key concepts 2

2.1. Large language models 2

2.2. Hallucination Problem 3

2.3. Retrieval Augmented Generation 4

2.4. Vector embeddings 5

2.5. Vector Database 7

3. Overview of Applications for RAG Extension 10

4. Technology used 11

4.1. TravelTalk 11

4.2. WikiTravel 12

4.3. LangChain 13

4.4. PineCone 14

4.5. FastAPI 16

5. Implementation 18

5.1. Web scraping and data preparation 18

5.2. Embedding and upserting vectors into a vector database? 20

5.3. Connecting OpenAI API to Vector database for retrieval 22

5.4. Test 23

5.5. Developing an API 24

5.6. Creating and connecting frontend to API 26

5.7. Prompt engineering 29

6. Results 31

7. Conclusion 36

8. Literature 37

9. List of tables 40

10. List of illustrations 41

11. List of attachments 41

1

1. Introduction

The rapid evolution of artificial intelligence (AI) has significantly transformed various aspects

of our daily lives, and the travel industry is no exception. Despite the abundance of travel-

related information available online, travellers often face challenges in finding accurate,

relevant, and personalized information to plan their trips effectively. Traditional travel

assistants and search engines, while useful, frequently fall short in delivering personalized,

context-aware recommendations that cater to individual preferences and needs. This gap in the

market highlights the necessity for a more advanced, intuitive, and personalized travel assistant

that can integrate vast amounts of data to provide precise and tailored travel advice.

The primary problem this thesis aims to address is the inefficiency and lack of personalization

in current travel assistance tools. Users often spend considerable time and effort sifting through

generic travel information, which may not always align with their unique requirements. This

can lead to suboptimal travel experiences, frustration, and missed opportunities. To bridge this

gap, the development of a sophisticated travel assistant that leverages the power of large

language models (LLMs) and retrieval-augmented generation (RAG) is imperative [1].

Motivated by the potential of cutting-edge AI technologies to improve user experiences, this

thesis introduces a web application that implements a personalized travel assistant. This

application harnesses the capabilities of RAG combined with LLMs to deliver highly relevant

and individualized travel recommendations. By integrating travel datasets and advanced AI

algorithms, the application can comprehend and respond to complex travel queries with

precision and context-awareness, thus enhancing the overall travel planning process.

The personalized travel assistant developed in this thesis not only aims to improve the

efficiency of retrieving travel-related information but also strives to offer a more enjoyable and

stress-free travel planning experience. By addressing the limitations of existing tools and

leveraging the strengths of modern AI technologies, this application aspires to set a new

standard in personalized travel assistance, ultimately enriching the way users plan and

experience their journeys.

The thesis is organized as follows. Chapter 1 introduces the research topic. Chapter 2 discusses

key concepts such as large language models, the hallucination problem, retrieval-augmented

generation, vector embeddings, and vector databases. Chapter 3 provides an overview of

existing applications for RAG extension. Chapter 4 outlines the technology used, including

TravelTalk, WikiTravel, LangChain, PineCone, and FastAPI. Chapter 5 details the

implementation, covering web scraping, embedding vectors, connecting APIs, developing an

API, and prompt engineering. Chapter 6 presents the results, while Chapter 7 concludes the

thesis. Finally, Chapters 8 to 12 include literature, lists of tables, illustrations, attachments, and

additional contributions.

2

2. Key concepts

2.1. Large language models

Large Language Models (LLMs) are a sophisticated category of artificial intelligence (AI)

models designed to understand and generate human language with remarkable proficiency [19].

These models are constructed using advanced deep learning techniques and are trained on

extensive corpora of textual data. This expansive training allows LLMs to grasp the complexity

of language, including grammatical rules, semantic meanings, and contextual cues. At the heart

of many LLMs, such as GPT-3 (Generative Pre-trained Transformer 3), lies the Transformer

architecture, which was originally introduced by Vaswani et al. in 2017 [7]. The Transformer

model revolutionized natural language processing by employing self-attention mechanisms

that enable the model to efficiently process and generate text. This self-attention mechanism

allows the model to weigh the importance of different words in a sentence relative to each

other, thereby producing sentences that are not only coherent but also contextually pertinent.

The architecture's ability to handle long-range dependencies in text makes it exceptionally

effective at capturing and replicating complex language patterns, leading to the generation of

text that closely mirrors human communication. As a result, LLMs have become integral in

various applications, ranging from chatbots to content creation tools, due to their advanced

capability to mimic human-like responses and engage in meaningful interactions.

The training of LLMs comprises two fundamental stages: pre-training and fine-tuning [19].

The pre-training phase involves autoregressive training of the model on a vast corpus of text

data - training the model on a task of predicting the next word. This phase is unsupervised,

meaning that the model learns from patterns in the data without explicit human intervention or

predefined labels [8]. During this stage, the model develops a broad and generalized

understanding of language, including syntax, semantics, and various linguistic structures. It

learns to recognize patterns, idiomatic expressions, and contextual clues that are common

across diverse texts. The second stage, fine-tuning, involves a more targeted approach where

the model is trained on a smaller, task-specific dataset [19]. Examples of tasks include text

classification (e.g., spam detection, topic categorization), sentiment analysis (e.g., identifying

positive or negative reviews, gauging social media sentiment), language translation (e.g.,

translating documents, converting speech to text across languages), and text summarization

(e.g., summarizing news articles, generating abstracts for research papers). This stage is

supervised, with human-provided labels guiding the model to refine its performance in a

particular domain or application [8]. Fine-tuning helps the model adapt its generalized

knowledge to specialized tasks, such as medical diagnosis or legal document analysis,

enhancing its accuracy and relevance in those specific areas. The combination of these two

stages ensures that LLMs can effectively generalize from a wide range of topics while also

delivering high performance in specialized applications.

The remarkable effectiveness of LLMs in diverse applications such as language translation,

text summarization, and conversational agents can be attributed to their ability to generate

3

human-like text based on the input they receive. By leveraging their extensive training data,

LLMs can comprehend context, disambiguate meanings, and produce responses that are

contextually appropriate and coherent. Their proficiency in generating natural language

responses makes them invaluable tools in various fields, including customer service, content

creation, and language education. However, despite their impressive capabilities, LLMs face

several challenges. These include the significant computational resources required for their

training and operation [8], as well as the potential for generating biased or inaccurate

information [2]. These issues arise due to the biases present in the training data and the inherent

limitations of the models. Addressing these challenges is a focal point of ongoing research,

which aims to improve the reliability and efficiency of LLMs. Efforts are being made to

develop more robust models that can minimize biases and enhance the accuracy of the

generated information [10], ensuring that LLMs continue to evolve as powerful and dependable

tools in the realm of artificial intelligence.

2.2. Hallucination Problem

The current definition of hallucinations [2], characterize them as generated content that is

nonsensical or unfaithful to the provided source content. These hallucinations are further

categorized into intrinsic hallucination and extrinsic hallucination types, depending on the

contradiction with the source content. In a extensive research paper called „A Survey on

Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open

Questions “[2], hallucinations have been categorized into two distinct types. The first type

called factual hallucination; the generated response will provide answers that are contained

to the context of the query, but the factual information is completely false. Whereas the second

type called faithfulness hallucinations completely stray from the context of the user query.

Figure 1Factual and faithfulness hallucination examples [2]

Hallucinations in LLMs can be attributed to several underlying factors. One primary cause is

the quality of training data. LLMs like GPT-3 are trained on vast amounts of text data [8],

which inherently contains inaccuracies, biases, and fictional content. During training, the

model does not differentiate between factually accurate and inaccurate information, leading to

potential misinformation generation. Additionally, the architecture of LLMs, primarily based

on transformers, relies on patterns and associations in the training data to predict the next word

4

in a sequence. This pattern-based prediction, while powerful, can sometimes produce plausible

but incorrect information if the context closely matches parts of the training data that contain

errors. Furthermore, LLMs are designed to generalize from their training data, which, while

enabling the generation of creative and contextually appropriate responses, also increases the

risk of generating content that sounds correct but is not backed by verifiable facts.

Consider a scenario where an LLM is asked to provide information about a specific medical

condition. If the model generates a plausible sounding but incorrect treatment method, it could

lead to misinformation that might have serious consequences for individuals relying on that

information. Similarly, in the legal domain, an LLM providing incorrect legal advice could

result in significant legal repercussions.

Several strategies can also be employed to mitigate the number of occurrences of hallucinations

without implementing Retrieval Augmented Generation [1]. One approach is enhancing the

quality of the training data by curating and filtering for accuracy, which involves removing or

tagging dubious sources and prioritizing verified information. Leveraging user feedback to

identify and correct recurring hallucination patterns is also effective; users can flag incorrect

information, which can then be used to fine-tune and improve the model [2]. Combining LLMs

with other AI models specialized in fact-checking and data verification can create a more robust

system that reduces the likelihood of hallucinations. Moreover, ensuring that users are aware

of the potential for hallucinations and encouraging critical evaluation of the information

provided by LLMs is essential.

2.3. Retrieval Augmented Generation

Retrieval-Augmented Generation (RAG) is an advanced natural language processing (NLP)

technique that combines pre-trained, parametric-memory generation models with a non-

parametric memory through a general-purpose fine-tuning approach [1] to produce more

accurate and contextually relevant responses. RAG aims to address the limitations of purely

generative models, which can sometimes produce inaccurate or nonsensical outputs

(hallucinations) which will be explained later in more detail, by integrating information from

external documents or databases.

RAG operates in two primary stages: retrieval and generation [1]. In the retrieval stage, the

input query is first processed to generate a search query. This could be a direct transformation

of the user's input, or a more refined query aimed at fetching the most relevant information by

embedding the query. The generated search query is then used to search a large corpus of

documents. This corpus can be anything from a predefined vector database (examples:

Pinecone, Qdrant, ElasticSearch, Redis etc.) to the search of the entire internet, depending on

the use case. The retrieval mechanism typically employs dense or sparse retrieval methods.

Dense retrieval utilizes embeddings from models like BERT which stands for Bidirectional

Encoder Representations from Transformers [1] to find semantically similar documents, while

sparse retrieval uses traditional search techniques like TF-IDF (Term Frequency-Inverse

5

Document Frequency) or BM25 to match keywords in the query with documents. Retrieved

documents are then scored based on their relevance to the query, and the top-K documents with

the highest scores are selected for the next stage.

In the generation stage, the selected documents are embedded using a transformer-based

model to capture the contextual information. These embeddings are combined with the original

query's embedding to form a comprehensive context vector. A generative model, often based

on the Transformer architecture (e.g., GPT-3.5), uses this context vector to generate a coherent

and contextually relevant response. This model is fine-tuned to ensure that it can effectively

incorporate the information from the retrieved documents.

Figure 2 Visual demonstration of how RAG works

The benefits of RAG are numerous. By leveraging external knowledge, RAG is more strongly

grounded in real factual knowledge which makes it “hallucinate” less and offers more control

and interpretability [1]. RAG can be adapted to various domains by changing the corpus of

documents used in the retrieval stage, making it a versatile tool for numerous applications,

including personalized travel assistants like in this use case, customer support, educational

tools, and simple question and answering assistants for specific events.

2.4. Vector embeddings

Embeddings are a fundamental component of neural language models, enabling these models

to understand and generate human-like text [14]. By converting words, phrases, and sentences

into dense, continuous vectors of numbers, embeddings bridge the gap between raw text data

and the numeric representation that enables computational processes within the model. These

vectors capture semantic meanings and relationships, allowing large language models (LLMS)

to perform various natural language processing tasks effectively.

6

At the core of vector embeddings is the idea of projecting words from a high-dimensional

sparse space to a low dimensional dense space where words with similar meanings are located

closer to each other. This concept can be traced back to early models like Word2Vec and GloVe

[12], which transformed individual words into fixed-size vectors based on their context within

large corpuses. The training process for these embeddings involves predicting the semantic

meaning of a word given its surrounding words or vice versa, leveraging the distributional

hypothesis that words appearing in similar contexts tend to have similar meanings.

Figure 3 Visual representation of semantic meaning in a high dimensional space

Modern large language models, such as BERT and GPT-4, extend this idea by enabling the

generation of more sophisticated embeddings that capture not only word-level semantics but

also contextual information [14]. These models use transformer architectures, which apply

attention mechanisms to weigh the importance of each word in a sentence relative to others.

This allows the generation of contextual embeddings, where the representation of a word varies

depending on its context. As depicted in Figure 3 the word “adult” semantically is between

words “man” and “woman” while being far away from words such as “child” and “boy”.

Embeddings enable the model to understand nuanced differences between words and phrases,

making it possible to generate more accurate and contextually appropriate responses [14]. For

example, in a sentence completion task, embeddings help the model predict the most likely

7

next word based on the context provided by preceding words. But depending on the corpus that

was used for vector embedding, the large language model can become biased when answering

certain questions. Data is still the most important part of natural language processing, and

machine learning in general. There is always risk when embedding corpuses that use certain

words or sentences in different ways, which can then prompt the LLM to answer user questions

in undesirable ways. Addressing this requires careful curation of training data and techniques

such as debiasing algorithms to mitigate the impact of those biases [11].

2.5. Vector Database

A vector database is used to store high-dimensional data that relational database management

systems cannot handle [14]. The primary function of vector databases is to enable fast and

accurate similarity searches among vectors. When LLMs generate embeddings — dense, multi-

dimensional vectors representing words, sentences, or documents — vector databases allow

these embeddings to be stored and quickly retrieved based on their similarity to a query vector

using an algorithm such as the similarity search algorithm [14]. This capability is crucial for

tasks like semantic search, recommendation systems, and nearest neighbour searches, where

finding the most similar items to a given input is required. Usually, these algorithms return the

K most similar queries that are then ranked for further use.

However, the implementation and management of vector databases comes with challenges.

One major challenge is the need for efficient storage solutions. High-dimensional vectors

consume substantial storage space, and managing this data efficiently requires advanced

compression techniques and scalable storage infrastructures [14]. Vector databases employ

various storage techniques to manage and combat those challenges efficiently. Storage

techniques include partitioning and sharding, compression algorithms and in-memory storage.

Partitioning is referred to dividing a single database into segments that can be accessed

independently, while sharding refers to distributing those partitions on different machines for

load balancing [14]. In-memory storage techniques store certain vector data in random access

memory instead of a disk for faster search and retrieval [14].

The use of vector databases greatly enhances the performance of LLMs across various

applications. In semantic search, for example, vector databases enable users to find documents

or text that are semantically similar to a query, even if they do not share the same keywords.

This results in more relevant search outcomes that better align with the user's intent. This

capability is implemented through advanced techniques such as Locality-Sensitive Hashing

(LSH), which hashes input items so that similar items map to the same buckets with high

probability, significantly reducing the search space [14]. Additionally, tree-based indexing

methods like k-d trees and ball trees create a hierarchical structure to enable efficient range and

nearest neighbour queries by recursively partitioning the data space [14].

8

In recommendation systems, vector databases can store user preferences and item

characteristics as vectors, allowing the system to suggest items that closely match a user's past

interactions or stated preferences. This process is often facilitated by graph-based indexing

methods such as Hierarchical Navigable Small World (HNSW) graphs as illustrated in Figure

4, which represent vectors as nodes and establish edges based on proximity, enabling efficient

traversal during queries [13].

Figure 4 Hierarchical Navigable Small World Graph [38]

Moreover, vector databases support the scalability of LLM applications. As the volume of data

and number of embeddings increase, vector databases can manage the additional load without

significant performance loss. This scalability is crucial for maintaining the efficiency and

responsiveness of LLM-based systems, especially in real-time applications like chatbots,

virtual assistants, and personalized content delivery. The combination of advanced indexing

techniques ensures that vector databases can handle high-dimensional data efficiently,

providing robust and scalable solutions for a variety of applications.

While approximate nearest neighbour algorithms can speed up searches, there is often a trade-

off between accuracy and speed, which must be carefully balanced depending on the

application’s requirements. Security and privacy are also significant concerns [13]. Vector

databases can store embeddings that contain sensitive information, and unauthorized access to

this data can lead to privacy breaches. Implementing robust security measures, such as

encryption and access controls, is essential to protect the data stored in vector databases.

Additionally, ensuring that the vectors do not inadvertently encode private or sensitive

information through techniques like differential privacy can further enhance data security [14].

9

Another challenge is the integration of vector databases with existing data storage and

processing systems and workflows. Many organizations have legacy systems designed around

relational databases, and integrating vector databases requires careful planning and potentially

significant changes to data pipelines and architectures. Interoperability and seamless

integration are crucial for leveraging the full benefits of vector databases without disrupting

existing operations.

Vector databases represent a critical technology for advancing the capabilities of LLMs and

other AI systems. By efficiently storing and retrieving high-dimensional data, they enable a

wide range of applications, from semantic search to recommendation systems. Addressing the

challenges of scalability, latency, security, and integration is essential for the successful

deployment of these databases [14]. As research and development continue, vector databases

will play an increasingly important role in the data-driven landscape.

10

3. Overview of Applications for RAG Extension

Retrieval-Augmented Generation (RAG) as a technique has been adopted by various

companies and applications to enhance the quality and relevance of generated content. RAG

combines retrieval mechanisms with generative models, allowing systems to pull in pertinent

information from a large corpus and use it to create more accurate and contextually appropriate

responses [1]. This approach is increasingly being used across different domains and use cases

to improve user interactions, content creation, and information synthesis.

Google employs RAG in its Question Answering (QA) systems to deliver more precise and

informative responses by retrieving pertinent documents from extensive corpora [32].

Facebook RAG model, designed for open-domain QA, uses Dense Passage Retrieval (DPR)

and BART to significantly improve answer quality and contextual relevance [1]. Zendesk

enhances its customer support chatbots with RAG-based models, retrieving relevant

knowledge base articles to provide instant, tailored responses, thereby reducing reliance on

human agents and improving customer satisfaction [33]. IBM Watson's virtual assistants use

similar techniques to deliver detailed, contextually appropriate responses, enhancing both

customer satisfaction and support efficiency [34]. Copy.ai utilizes RAG to help marketers and

writers generate high-quality content by retrieving relevant data from large corpora, producing

well-informed and contextually accurate marketing materials [35].

Retrieval-Augmented Generation is revolutionizing the way various industries handle

information and LLM-enabled content generation. By integrating retrieval and generative

capabilities, RAG-based models are enhancing the factuality, quality, relevance, and efficiency

of responses and content. This technology is proving to be invaluable in wide spectrum of

applications ranging from customer support and virtual assistance to academic research and

content creation.

11

4. Technology used

4.1. TravelTalk

TravelTalk is a single-page web application where users can post information about their

travels and experiences. Every single post is geolocated using a location marker which is then

displayed on a map, this makes it easier to share and write about experiences with other users.

The application is still in active development and is the application into which the personalized

travel agent extended with RAG is implemented. The application is split into two main parts,

the client component, and the server component. The client component hosts the frontend of

the application (as seen on Figure 5), which is being built using VueJS, a popular component-

based JavaScript framework for building scalable and performant user interfaces for web

applications [20]. The server component is further split into two interconnected parts. The

REST API server, and the database. The database that is being used for this project is

MongoDB [31]. MongoDB is a NoSQL (not only SQL) database that manipulates data by

saving the data into documents instead of tables. The database saves records of user's

information for logging into the application, their posts and interactions while the REST server

communicates with the database and sends the responses to the frontend for easier use and

visualization. Most of the workload for the application is distributed to the server component.

The REST API server is being built using NodeJS, a popular JavaScript runtime that enables

JavaScript to run outside of the browser using Google's V8 engine [21]. On the server

component all error messages are being processed and handled to ensure security,

authorization and authentication. If error handling, authentication or authorization were being

handled in any capacity in the client component, it would be very prone to security hazards.

Tech savvy users can manipulate the client-side code to enter unauthorized domains or API

requests using techniques like operating the browsers local storage or intercepting and parsing

cookies that are saved in local memory.

Figure 5 Visual interface of TravelTalk application

12

Retrieval augmented generation is implemented into the frontend of the TravelTalk application

using an external and custom API. The final implementation will include a text box that will

support a chatting system between the user and the RAG extended large language model.

4.2. WikiTravel

WikiTravel, a collaborative project launched in 2003, aims to create a comprehensive, up-to-

date, and reliable free travel guide [22]. Operating as a wiki, it allows anyone with internet

access to contribute, edit, and update its content. WikiTravel in the central point of access to

the collective knowledge and experiences of travelers worldwide, resulting in a dynamic and

continuously evolving resource. One of WikiTravel's primary strengths is its extensive and

detailed information on a wide array of destinations, from popular tourist destinations to lesser-

known locations. It offers insights into attractions, accommodations, dining, transportation, and

local customs. Each location page typically includes sections on history, climate, geography,

culture, and travel tips, ensuring a holistic view that caters to various traveler needs. This

breadth of information makes WikiTravel an invaluable tool for travelers seeking authentic,

practical, and diverse perspectives on their destinations. Additionally, it serves as an excellent

dataset for knowledge extension for personalized travel assistants, hosting valuable and factual

information that large language models may not possess in their training datasets. This includes

contact details, addresses, menu prices for restaurants and establishments, shortcuts

documented by local residents, and tips on security and navigating cities. The platform's open-

editing model ensures a constant supply of up-to-date knowledge, further enhancing its utility

for extending the capabilities of language models. All information on WikiTravel is open-

sourced and well-documented, with detailed API documentation available on the MediaWiki

platform [22]. MediaWiki, being open-source and continually supported, allows users to access

and create custom applications for any website hosted using its engine, with Wikipedia and

WikiTravel being prime examples.

WikiTravel’s well-organized structure enhances its usability, categorizing content into

continents, countries, regions, cities, and various travel topics. This geographical organization,

combined with hyperlinked entries to related articles, creates an interconnected web of

information that is both comprehensive and easily accessible. This layout helps travellers plan

their trips efficiently and serves as a resource for researchers and developers seeking detailed

and structured information on global travel destinations. The thorough compilation and cross-

referencing of data ensure users can find specific information quickly and efficiently, providing

a wide range of interconnected information. This makes WikiTravel a practical tool for

travellers and an exemplary resource for anyone involved in travel research or development. In

conclusion, Wikitravel's collaborative nature, comprehensive information, and organized

structure make it an indispensable tool for travellers, researchers, and developers alike, offering

a reliable and expansive travel guide that continuously evolves with contributions from a global

community.

13

4.3. LangChain

LangChain is an advanced Python framework designed to streamline the development and

deployment of applications that utilize large language models (LLMs) [23]. Launched to meet

the growing demand for development of LLM-enabled sophisticated natural language

processing (NLP) applications, LangChain provides the necessary tools and infrastructure to

facilitate seamless integration of LLMs into various workflows. By emphasizing modularity,

extensibility, and ease of use, LangChain caters to a wide range of applications, from chatbots

and virtual assistants to content generation and complex data analysis. This flexibility allows

developers to create tailored solutions that meet specific requirements, making LangChain a

versatile tool in the realm of NLP.

One of the primary strengths of LangChain is its modular architecture, which offers a high

degree of customization. The framework is designed to let developers select and combine

different components, known as "chains," according to their specific needs. This modularity

spans various aspects of NLP [24], including tokenization, model selection, and text

generation, enabling developers to experiment with different configurations and optimize their

applications for performance and accuracy. In the context of this thesis, LangChain is

particularly valued for its built-in support for the PineCone vector database [24], OpenAI

embedding functionality [24], and chunking capabilities, especially through the Recursive

Character Text Splitter [15]. Widely adopted, LangChain's detailed and comprehensible

documentation, along with its “out of the box” code snippets, provides developers with a solid

foundation for utilizing its modules effectively. This accessibility not only helps in rapid

prototyping but also in fine-tuning applications to better align with unique project

requirements.

Moreover, LangChain's user-friendly API abstracts much of the complexity involved in

working with LLMs, making it accessible to developers with varying levels of expertise [24].

The framework includes pre-built components and templates for common tasks such as

question answering, text summarization, and sentiment analysis, which allows for the quick

building and deployment of functional NLP applications. For example, a Retrieval-Augmented

Generation (RAG) application can leverage these pre-built components to analyse user queries,

extract relevant information from sources like WikiTravel data, and generate personalized

travel advice. This ease of use is complemented by LangChain's support for extensibility,

allowing developers to enhance and expand the framework’s capabilities as needed. Custom

components can be seamlessly integrated, facilitating the creation of specialized NLP

functionalities. This extensibility is crucial for applications that require domain-specific

knowledge or custom processing pipelines [24]. For instance, developers can create custom

embeddings or fine-tune models to improve the relevance and accuracy of generations of

recommendations, significantly enhancing the user experience.

LangChain's emphasis on performance and scalability is another critical aspect of the

framework. It is designed to handle large volumes of data and high request rates, making it

suitable for enterprise-grade applications; currently over one hundred thousand companies use

LangChain for NLP related tasks [23]. The framework supports distributed processing and can

14

be deployed in various environments, including cloud platforms and on-premises

infrastructures, ensuring that applications can scale to accommodate growing user bases and

increasing data loads without compromising performance. Additionally, LangChain provides

robust tools for monitoring and managing NLP applications, including features for logging,

error handling, and performance tracking [24]. These tools are essential for identifying

bottlenecks, diagnosing issues, and maintaining optimal performance in production

environments. LangChain's focus on security and compliance further enhances its suitability

for enterprise applications, with features for data encryption, access control, and adherence to

data protection regulations [24]. This ensures that sensitive information is handled securely,

which is particularly important for applications processing personal data or operating in

regulated industries. LangChain’s combination of modularity, ease of use, performance, and

security makes it a trending tool for developers building advanced LLM-enabled NLP

applications.

4.4. PineCone

Pinecone is a vector database designed to streamline the storage, indexing, and retrieval of

high-dimensional vector embeddings [25]. Developed to address the increasing demand for

efficient management of vector data, Pinecone offers a managed infrastructure that simplifies

the complexities associated with vector databases. This allows developers to concentrate on

building and scaling their applications rather than focusing on data handling. By providing a

robust and user-friendly platform (as seen on Figure 6), Pinecone enables s developers to

leverage the full potential of vector embeddings for various applications, including similarity

search, recommendation systems, and natural language processing [25].

Figure 6 Figure 6 Pinecone user interface

A primary advantage of Pinecone lies in its capacity to manage and query vector embeddings

at scale while maintaining high performance [25]. Vector embeddings, are essential for tasks

that require retrieval and processing large amounts of data. Pinecone’s architecture is optimized

to handle vector embeddings efficiently, offering fast and accurate similarity searches through

15

advanced indexing techniques such as hierarchical navigable small world graphs (HNSW) [25].

This capability is particularly beneficial for applications that need to process complex, high-

dimensional data quickly and accurately. For instance, in the development of an application

that uses Retrieval generated augmentation (RAG) using WikiTravel data, Pinecone can store

and retrieve relevant vector embeddings, enabling the application to deliver precise and

accurate travel advice and recommendations. When a user queries the RAG application,

Pinecone swiftly retrieves the most pertinent vector embeddings, ensuring prompt and accurate

responses, thereby enhancing the overall user experience.

Pinecone’s fully managed service offers a range of features that significantly enhance the

development process [25]. One of the key features is automatic scaling, which ensures that the

system can handle increasing volumes of data and queries without any degradation in

performance. This is crucial for maintaining efficiency as the application grows. Additionally,

Pinecone includes built-in monitoring and logging capabilities, allowing developers to track

usage patterns, identify potential issues, and optimize their applications accordingly [25]. This

managed approach reduces operational overhead, freeing researchers and developers to focus

on data utilization rather than infrastructure management. Furthermore, Pinecone supports

integration with popular machine learning frameworks and libraries, making it easier to ingest

and process vector embeddings from various sources [25]. This interoperability enhances its

utility in diverse research and development contexts. For example, embeddings generated from

WikiTravel data using models like BERT [36] or in this case OpenAI’s embedding model [25],

can be stored and queried within Pinecone, enabling data analysis and application

functionalities. Pinecone’s security features, including data encryption at rest and in transit

[37], ensure that sensitive information is protected, providing assurance that user data and

proprietary models are handled securely throughout their lifecycle.

Chunking helps mitigate these issues by breaking the corpus into manageable pieces, ensuring

faster and more precise retrieval of information. By embedding smaller chunks, the vector

database can quickly and accurately match queries with relevant data. This approach optimizes

both the speed and reliability of the travel assistant, providing users with timely and accurate

information even under heavy load.

Pinecone is a vector database tool for managing vector embeddings, offering unparalleled

performance, scalability, and ease of use. Its ability to efficiently store and query vector data

makes it a valuable asset for applications relying on complex data representations, such as the

RAG application developed using WikiTravel data. By integrating Pinecone, developers can

leverage its advanced features to build robust, responsive, and scalable systems that

significantly enhance user experience and drive innovative solutions. Pinecone’s combination

of high performance, seamless scalability, and strong security measures makes it an ideal

choice for any developer looking to harness the power of vector embeddings in their

applications.

16

4.5. FastAPI

FastAPI is a cutting-edge, high-performance web framework for building APIs with Python

3.6+ that relies on standard Python type hints [26]. Created by Sebastián Ramírez, FastAPI is

designed for ease of use and learning while maintaining efficiency and scalability. One of its

standout features is the automatic generation of interactive API documentation using Swagger

UI and ReDoc, making it a valuable tool for both developers and API consumers.

A significant advantage of FastAPI is its impressive performance. Leveraging the

asynchronous capabilities of Python's asyncio module and the Starlette framework [17],

FastAPI achieves exceptional speed. Benchmarks ran by independent company TechEmpower

[16] indicate that FastAPI can rival frameworks like Express.js [16] in terms of performance,

positioning it among the fastest frameworks available for Python. This performance is crucial

for applications that demand low latency and high throughput, such as real-time data processing

and high-concurrency services.

Figure 7 API performance benchmark

The ease of use provided by FastAPI is another advantage. Following modern Python practices,

it is intuitive for developers familiar with the language. The use of Python type hints for request

validation and dependency injection allows developers to write clean, readable code. This not

only accelerates the development process but also makes the codebase easier to maintain and

extend. Defining request models with Pydantic [18], for example, ensures automatic data

validation, reducing boilerplate code and minimizing potential bugs. Additionally, FastAPI's

support for asynchronous programming enables it to handle multiple requests concurrently

without blocking, a feature critical for applications that process multiple user requests

simultaneously. This is particularly beneficial for a RAG application serving real-time travel

17

recommendations, as FastAPI can efficiently manage I/O-bound operations, leading to better

resource utilization and enhanced responsiveness.

FastAPI integrates seamlessly with other Python libraries and frameworks. It supports

dependency injection [26], which allows for modular and reusable components, making it

suitable for large-scale applications. Integrating FastAPI with machine learning libraries like

TensorFlow or PyTorch [30], for instance, enables the creation of APIs that can serve ML

models, enhancing the functionality of applications like the RAG system. The framework’s

auto-generated interactive documentation is another feature. This documentation is

automatically updated as the API evolves, providing a clear and up-to-date reference for

developers working on the project and for users needing to understand how to interact with the

API. In collaborative environments, this ensures all stakeholders have access to accurate and

comprehensive API documentation.

FastAPI places a strong emphasis on security, addressing common security requirements such

as OAuth2, JWT (JSON web token) authentication, and API key validation [27]. This focus on

security ensures that APIs built with FastAPI can protect sensitive data and provide secure

access controls, which is critical for applications handling personal or proprietary information.

By prioritizing security, FastAPI makes it possible to build robust, secure APIs capable of

supporting a wide range of applications, from simple web services to complex, high-

performance systems.

18

5. Implementation

5.1. Web scraping and data preparation

The first and most crucial step is acquiring and preparing the data for embedding and storage

into the vector database. The goal of the travel assistant is to provide as much useful

information as possible about various cities and popular travel destinations. Due to the

extensive data required to cover the entire globe, it was decided to include data only from the

50 most popular tourist destinations in Europe [31]. This dataset is extensive to provide the

necessary information without being computationally expensive to process and embed.

Additionally, limiting to Europe, enabled detection of possible inaccuracies or hallucinations,

due to the personal familiarity with some of the locations.

If there is a need to extend the data to include other cities or continents, the system and

framework have been developed to allow easy addition or removal of information. All

information was sourced from WikiTravel. The website contains information such as where to

eat when visiting, various ways to navigate to and from a selected destination, cultural details,

and much more. All of the data can be accessed from the MediaWiki platform on which

WikiTravel is hosted. To access the data, an external API call needs to be made with a specific

query indicating the desired data. Figure 8 provides a visual representation of MediaWiki’s

documentation, displaying the available HTTP properties when requesting data and the

responses the server could return.

Figure 8MediaWiki Get request

For this specific use case the following URL was used:

base_api_url =

"https://wikitravel.org/wiki/en/api.php?action=parse&prop=wikitext&p

age={city}&format=json"

19

To access the WikiTravel data using an API call, the base URL needs to be

"wikitravel.org/wiki/en/api.php". Each property sent with the request is separated by the "&"

symbol. In this case, the properties are "action=parse", "prop=wikitext", "page={city}", and

"format=json". This request retrieves all the data about a certain city in WikiTravel’s database

and parses the data in JSON format. With this step, we have only acquired access to the

database; we still need to build our corpus by fetching, cleaning, and storing the data. The full

function for accessing and saving data can be seen below:

def fetch_and_save(api_url, city):

 try:
 headers = {

 'User-Agent': '{LOGIN_TOKEN}'

 }

 response = requests.get(api_url, headers=headers)

 if response.status_code == 200:

 try:

 content = response.json()

 content_str = json.dumps(content, indent=4,ensure_ascii=False)

 filename = f"markdowns/{city.replace(' ', '_')}.md"

 with open(filename, 'w', encoding='utf-8') as file:

 file.write(content_str)

 print(f"Response saved to {filename}")

 except KeyError:

 print(f"No data found for {city}")

 else:

 print(f"Error: {response.status_code}")

 except requests.RequestException as e:

 print(f"Error fetching data: {e}")

The function itself takes two input variables: the base URL

("https://wikitravel.org/wiki/en/api.php?action=parse&prop=wikitext&page={city}&format=

json") and the city. The function sends a GET request to the MediaWiki platform, and if the

response status code is 200 (indicating success), the content is written to a markdown file and

saved to a directory called "markdowns". If any of these steps fail, an error will be generated.

Since all the data is in JSON format with many HTML tags and formatting, the data needs to

be prepared and cleaned for future embedding. A function that removes all whitespaces, HTML

20

tags, and newlines and sets all characters to lowercase (to help with retrieval later on) was

written, as seen below:

def preprocess_text(text):

 text = re.sub(r'\n+', ' ', text)

 text = re.sub(r'[\[\]\{\};.,=<>]', '', text)

 text = re.sub(r'\s+', ' ', text).strip()

 text = text.lower()

 return text

def clean_files(directory):

 for filename in os.listdir(directory):

 if filename.endswith(".md"):

 filepath = os.path.join(directory, filename)

 with open(filepath, 'r+', encoding='utf-8') as file:

 text = file.read()

 cleaned_text = preprocess_text(text)

 file.seek(0)

 file.write(cleaned_text)

 file.truncate()

With these crucial steps completed, the corpus is successfully prepared and pre-processed for

further use in the next steps. This comprehensive preparation involves not only accessing the

raw data from the WikiTravel database but also ensuring that the data is cleaned and

standardized for optimal performance. By removing HTML tags, whitespaces, and formatting

inconsistencies, we create a streamlined and consistent dataset. Additionally, converting all

text to lowercase improves the efficiency of future data retrieval and embedding processes.

This preprocessing sets a solid foundation, enabling the travel assistant to deliver accurate and

relevant information efficiently. The corpus is now ready for advanced stages, including

embedding into the vector database and further analysis.

5.2. Embedding and upserting vectors into a vector database?

After the data preparation step is complete; the next step is to embed the finalized corpus and

insert all the data into a vector database. For this thesis, the Pinecone vector database was

chosen, but the key steps and concepts apply to any vector database.

Since the WikiTravel corpus is quite large, containing around three hundred thousand words,

we first need to split all the files into smaller chunks. This method, known as "chunking," is

essential for efficient processing [28]. If we were to embed and insert all fifty files into the

database as is, querying the database for specific information would require the engine to

process entire files before locating the required information. This would dramatically decrease

performance and accuracy, especially at scale when thousands of users are querying the

database simultaneously.

21

The function “chunk_data” as seen below reads the input file, and splits the file into smaller

chunks, where the chunk size is set to two thousand characters, and every subsequent chunk

overlaps with one hundred fifty characters, and then returns the list of chunks into an array.

def chunk_data(filename, chunk_size=2000, chunk_overlap=150):

 text = filename

 text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,

chunk_overlap=chunk_overlap, length_function=len, is_separator_regex=False)

 chunks = text_splitter.split_text(text)

 return chunks

The trick here is to flatten the final list to prevent nested arrays which can break the process of

inserting data to the database. Once the files have been successfully chunked and saved as an

array, an embedding model needs to process all of the chunks. For the purpose of this thesis,

using Langchains OpenAI embedding API all of the chunks from all WikiTravel files can be

embedded into the vectors and stored in the vector database.

embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])

index_name='traveltalk-test'

vector_store = PineconeVectorStore.from_documents(

 final,

 index_name=index_name,

 embedding=embeddings

)

The process of inserting data is quite simple, using Pinecone’s built-in (“from_documents”)

function we can select the documents we want to embed and insert. The variable called “final”

represents the document list, index_name represents into which index or collection we want to

insert the data and the embeddings variable specifies the embedding model the function will

use.

Once this step completes all of the data can be seen in the Pinecone dashboard. The current

number of vectors is 2794 as seen on Figure 9.

Figure 9 TrevelTalk vector count in Pinecone dashboard

22

5.3. Connecting OpenAI API to Vector database for retrieval

OpenAI’s API is locked behind a paywall, but currently, as of writing this thesis, the price is

almost negligible and provides plenty of features. The main feature being used for this thesis

is the ability to pick and use a specific generative AI model. For the purpose of this thesis, the

“gpt-3.5-turbo” model was picked due to its stability and relatively consistent performance.

Once the API paywall is handled, we receive an API key that we can use for our RAG-extended

travel assistant. Importing and initializing LangChain's OpenAI chat module is fairly simple.

Here is the code snippet to do so:

from langchain_openai import ChatOpenAI

chat = ChatOpenAI(

 openai_api_key = os.environ['OPENAI_API_KEY'],

 model = 'gpt-3.5-turbo'

)

LangChain provides a robust interface for integrating with OpenAI's API, making it easier to

build applications that leverage the power of large language models. With this setup, we can

interact with the selected AI model to enhance our travel assistant, ensuring it can provide

accurate information to users. Once the chat is initialized, we need to create an augmented

prompt that includes insertion of the retrieved knowledge from vector database. When creating

an LLM-assistant, first we need a system prompt that instructs the generative model on how to

behave, what questions it can answer, what the user query is, and what knowledge the model

has to answer the query, providing the context of the interaction.

We can create a simplified function to test if our retrieval method works correctly. This

function, called “augmented_prompt,” can be seen in the following code snippet:

def augmented_prompt(query: str):

 results = vectorStore.similarity_search(query,k=3)

 source_knowledge = '\n'.join([x.page_content for x in results])

 augmented_prompt = f"""Using the contexts below, answer the query.

 Contexts: {source_knowledge}

 Query: {query}"""

 return augmented_prompt

In this function, the similaritysearch method from Pinecone’s vectorStore method is used to

retrieve the top three most relevant pieces of information related to the query. These pieces of

information are then combined into a single string, “source_knowledge”, which is incorporated

into the prompt. The prompt instructs the model to use the provided contexts to generate a

response to the query.

23

Writing effective system prompts is crucial for ensuring that the generative model behaves as

expected and provides accurate and relevant answers. By embedding the retrieved knowledge

directly into the prompt, we enable the model to leverage specific information from our

database, improving its ability to assist users with their inquiries. This approach helps create a

more robust and informative AI assistant, with reduced problem of the hallucinating while

generating response.

5.4. Test

Now we need to test implemented function and confirm if the retrieval of data works. For this

experiment, we will use an identical query on both our extended assistant and the official

ChatGPT platform. Both tests will use the same model for consistency. Below, you can see the

responses from the RAG extended model and the ChatGPT model, where we send the exact

same query. In this case, the query is, "What’s the phone number of Parish of the

Blessed Trinity in Amsterdam?".

In this experiment, we aim to evaluate the performance and accuracy of our retrieval-

augmented generation (RAG) extended model compared to the standard ChatGPT model. By

using the same query across both platforms, we ensure a fair comparison and can identify any

discrepancies in the responses. This will help us determine if our extended model improves

information retrieval and overall user experience. The specific query chosen for this test is

practical and straightforward, making it an ideal candidate for assessing the models' efficiency

and reliability in retrieving real-world data.

Figure 10 ChatGPT response

24

Figure 11 Rag extended model responseWe can now confirm the RAG extended model works

as intended and retrieves correct information, overperforming the ChatGPT-turbo-3.5

response.

5.5. Developing an API

To utilize and connect the RAG (Retrieval-Augmented Generation) extended travel assistant,

it is imperative to create an API that facilitates communication between the frontend

application, TravelTalk, and the assistant, enabling the display of messages. The development

of this API employs FastAPI.To allow the frontend application to communicate with the API,

Cross-Origin Resource Sharing (CORS) must be configured. This setup specifies the origin is

„localhost:8080“(which is the address of the TravelTalk application) to allow access to the

API, thus enhancing security while enabling necessary functionality:

origins = ["http://localhost:8080", "http://127.0.0.1:8080"]

app = FastAPI()

app.add_middleware(

 CORSMiddleware,

 allow_origins=origins,

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

Next, we need to initialize the Pinecone client and the OpenAI chat model using API keys

stored in environment variables. Defining the embeddings and vector store which will be used

to retrieve similar contexts for the given queries:

class Query(BaseModel):

 query: str

pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])

chat = ChatOpenAI(

25

 openai_api_key=os.environ['OPENAI_API_KEY'],

 model='gpt-3.5-turbo'

)

embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])

indexUpsert = pc.Index('traveltalk-test')

text_field = 'text'

vectorStore = PineconeVectorStore(

 indexUpsert,

 text_key=text_field,

 embedding=embeddings,

)

Creating a function „augmented_prompt“ that generates a comprehensive prompt by

combining retrieved contexts with the user query. This function uses the vector store to perform

a similarity search and constructs a detailed prompt for the assistant to provide accurate and

contextually relevant responses:

messages = []

def augmented_prompt(query: str):

 results = vectorStore.similarity_search(query,k=5)

 source_knowledge = '\n'.join([x.page_content for x in results])

 augmented_prompt = f""" You are a helpful and friendly travel assistant.

 Using 10th grade knowledge, you will answer user queries about anything

related to traveling. Questions

 about cities, navigation, cuisine etc.

 If a question arises about a different area, respectfully decline the

query.

 Using only the knowledge from the contexts below, answer the query.

 Here is the conversation history: {messages}

 Contexts: {source_knowledge}

 Query: {query}"""

 return augmented_prompt

The function uses two main variables for retrieval. The “messages” variable is an array

structure that holds each message sent by the LLM and the user sending queries. Using this

variable in the prompt we can access the conversation history for better contextual

performance. The “source_knowledge” variable stores all the necessary knowledge from the

Pinecone database to be used in the prompt.

Defining the API endpoints for creating and deleting queries. The POST endpoint processes

incoming queries, generates an appropriate prompt, and retrieves the assistant's response. The

DELETE endpoint clears the conversation history:

@app.post('/')

26

async def create_query(query: Query):

 query_text = query.query

 prompt = HumanMessage(

 content=augmented_prompt(query_text)

)

 messages.append(prompt)

 res = chat(messages)

 return {res.content}

@app.delete('/')

async def delete():

 global messages

 messages = []

Using this API endpoint, the next step is to test the functionality using Postman. Below we can

see the API is working as intended and can be used to connect our frontend application.

5.6. Figure 12 API responseCreating and connecting frontend to API

To connect the API to the frontend of TravelTalk, we will integrate a new component called

"ChatComponent.vue" into the existing VueJS application. Modern frontend libraries like

ReactJS and VueJS require the first character of the file name to be capitalized. This convention

ensures that the JSX (JavaScript XML) rendering agent can identify the component as an

HTML element during the import process, instead of mistaking it for a regular variable.

A VueJS file typically consists of three main sections: the template, script, and style. The

template section is where the HTML markup resides, defining the structure and layout of the

component. The script section contains the methods and JavaScript logic, which control the

component's behaviour and data manipulation. Lastly, the style section includes the CSS

styling, which governs the visual appearance of the component. Below is an example of how

the "ChatComponent.vue" file is structured:

27

<template>

 <div>

 <button @click="toggleChat" class="toggle-button">

 {{ isOpen ? "Close Chat" : "Open Chat" }}

 </button>

 <div v-if="isOpen" class="chat-container">

 <div class="messages">

 <div v-for="(message, index) in messages" :key="index"

class="message">

 {{ message.content }}

 </div>

 <div v-if="loading" class="message bot">

 ...

 </div>

 </div>

 <div class="input-container">

 <input

 v-model="newMessage"

 @keyup.enter="sendMessage"

 placeholder="Type your message here..."

 />

 <button @click="sendMessage">Send</button>

 </div>

 </div>

 </div>

</template>

In this template, we define the structure of the chat interface. A button is used to toggle the chat

window open and closed. When the chat is open, a container displays the messages and an

input field for the user to type new messages. The v-if directive is used to conditionally render

elements based on the component's data properties, such as “isOpen” and “loading”.

<script>

import axios from "axios";

export default {

 data() {

 return {

 messages: [],

 newMessage: "",

 isOpen: false,

 loading: false,

 };

 },

 methods: {

 toggleChat() {

 if (this.isOpen) {

 this.closeChat();

28

 } else {

 this.isOpen = !this.isOpen;

 }

 },

 async closeChat() {

 try {

 await axios.delete("http://localhost:8000/");

 this.isOpen = false;

 this.messages = [];

 } catch (error) {

 console.error("Error closing chat:", error);

 }

 },

 async sendMessage() {

 if (this.newMessage.trim() === "") {

 return;

 }

 const userMessage = {

 content: this.newMessage,

 type: "user",

 };

 this.messages.push(userMessage);

 this.newMessage = "";

 this.loading = true;

 try {

 const response = await axios.post("http://localhost:8000/", {

 query: userMessage.content,

 });

 const botMessage = {

 content: response.data[0],

 type: "bot",

 };

 this.messages.push(botMessage);

 } catch (error) {

 console.error("Error sending message:", error);

 } finally {

 this.loading = false;

 }

 },

 },

};

</script>

29

In the script section, we import axios to handle HTTP requests. The component's data function

returns an object containing the state properties: “messages” (an array to hold chat messages),

“newMessage” (the current input from the user), “isOpen” (a Boolean to control the visibility

of the chat window), and “loading” (a Boolean to indicate if a message is being processed).

The “toggleChat” method toggles the chat window's visibility. If the chat is open, it calls the

“closeChat” method, which sends a DELETE request to the backend to close the session and

clear the messages. The “sendMessage” method is responsible for sending user messages to

the backend. It first checks if the input is not empty, then adds the user message to the messages

array and resets the “newMessage” input. The method sets loading to true and sends a POST

request with the user's message. Upon receiving the response, it adds the bot's reply to the

messages array and sets loading to false.

With the component fully built and imported into the “PostComponent.vue” file, we can finally

visualise r RAG-extended travel assistant functioning on the TravelTalk application. This

integration signifies the completion of the project. The system is now capable of engaging with

users, providing dynamic and contextually relevant travel advice, showcasing the practical

application of advanced AI techniques in a user-friendly interface.

Figure 13 is the visualisation of RAG-extended travel assistant,

5.7. Figure 13 Frontend implementation of RAG extended

chatbotPrompt engineering

During the process of testing the RAG-extended travel assistant, prompt engineering proved to

be a crucial step in achieving desirable results. Throughout the testing phase, numerous

instances arose where the retrieval system failed to properly locate the requested data. For

example, a query such as “List some restaurants in Berlin” would sometimes yield

30

irrelevant or incorrect responses like “I don’t have any travel-related

information for Paris or Rome.” Clearly, these results did not meet the requirements

for a successful travel assistant. Addressing these types of issues was essential for ensuring the

reliability and accuracy of the travel assistant. But how can such problems be resolved? The

answer lies in matriculate prompt engineering.

Prompt engineering involves the strategic design and refinement of the input prompts given to

a language model to elicit the most accurate and relevant responses. This process includes

crafting precise, unambiguous prompts and iteratively testing and adjusting them to minimize

errors and maximize the quality of the model’s output [29]. Effective prompt engineering can

significantly enhance the performance of language models, particularly in tasks requiring

specific and accurate information retrieval, as seen with the travel assistant. By carefully tuning

the prompts, developers can guide the model to better understand the context and deliver

responses that align with user expectations, thereby improving the overall utility and user

experience of the application.

During the testing of the RAG-extended travel assistant, prompt engineering involved creating

and refining system prompts that instruct the language model on how to behave and what

information to prioritize. These system prompts are meta-instructions provided to the model to

ensure it understands the type of information it should retrieve and how to present it. For

instance, the system prompt for this project is crafted to say, “You are a helpful and

friendly travel assistant. Using 10th grade knowledge, you will answer

user queries about anything related to traveling. Questions about

cities, navigation, cuisine etc. If a question arises about a

different area, respectfully decline the query.”

The biggest boost in the agent's accuracy was further cleaning the data, increasing the chunk

size and converting all characters to lower-case. Below in Figures 14 and 15 are examples of

hallucinations, and improper retrieval respectively.

31

.

Figure 14 Example of hallucination

Figure 15 Example of improper retrieval

6. Results

The effectiveness of the RAG-extended travel agent was tested and evaluated by inputting the

exact same prompt into both the travel agent and ChatGPT-4.0, and then comparing the results.

Below in Table 1 are shown all evaluations, highlighting differences in their performance and

accuracy. This comparison aims to compare the strengths and weaknesses of both systems (e.g.

RAG-extended responses vs. ChatGPT-4o, responses) in handling user queries effectively. The

full responses are provided in Figures 16 - 21.

Table 1Evaluation of responses for RAG extended assistant and ChatGPT

Input RAG-extended travel

assistant response

ChatGPT-4o response

“List some restaurants

in Alicante”

Answer satisfies the user

query and provides

factual, and specific

knowledge (address,

ChatGPT provided a broader response

that still satisfied the user query but

didn’t provide any specific or factual

information.

32

phone numbers, prices

etc.)

For full response see

Figure 16

For full response See Figure 17

“Tell me about

Nemesio Casa”

The answer provided was

very brief, yet it was very

useful. The answer

provided contacts and

links to external

websites.

For full response See

Figure 18

The answer provided was very

detailed, but didn’t provide

information that the travel assistant

provided. The answer wasn’t focused

on giving specific information.

For full response See Figure 19

“Can I take a train to

Dubrovnik?”

Brief answer with very

helpful and specific

information.

For full response See

Figure 20

Very detailed and helpful answer.

Provided the same information the

travel assistant provided, but in more

detail.

For full response See Figure 21

The travel assistant consistently provided briefer but accurate responses, offering specific

details such as addresses, phone numbers, and useful links. In contrast, ChatGPT's responses

were more detailed but often lacked the concise, factual information that the travel assistant

provided. The full responses to each query are in the Figures 16-21.

33

Figure 16 Input 1” List some restaurants in Alicante”” - Travel assistant response

Figure 17 Input 1: “List some restaurants in Alicante” - ChatGPT-4o response

34

Figure 18 Input 2 “Tell me about Nemesio Casa” - Travel assistant response

Figure 19 Input 2 “Tell me about Nemesio Casa”” - ChatGPT-4o response

35

Figure 20 Input 3” “Can I take a train to Dubrovnik?”” - Travel assistant response

Figure 21 Input 3“Can I take a train to Dubrovnik?” - ChatGPT-4o response

36

7. Conclusion

In this thesis, the process of implementing Retrieval Augmented Generation (RAG) with a

large language model and providing a frontend solution in TravelTalk application was

implemented. Key concepts such as hallucinations, vector embeddings, and other relevant

mechanisms were thoroughly explained to provide a solid theoretical foundation for RAG

implementation. Through testing and evaluations, it was shown that the RAG-extended travel

assistant generally outperformed a cutting-edge large language model (ChatGPT-4.0). The

results indicate that RAG not only enhanced the accuracy and specificity of responses but also

effectively mitigated common issues such as hallucinations and irrelevant information.

In conclusion, the findings of this thesis strongly support the benefit of integration of RAG

when building products or applications that utilize large language models. The implementation

of RAG offers significant benefits, including improved performance, greater reliability, and

more precise information retrieval, which are crucial for user satisfaction. Given these

advantages, it is highly recommended to employ RAG in any application leveraging large

language models.

Future development plans involve several key areas. First, the database will be expanded to

cover global data, allowing for precise and comprehensive data retrieval across different

regions. Second, the API will be optimized to enhance performance, focusing on reducing

response times and lowering memory usage to ensure efficient operation. Finally, the

application will be fully deployed for public use, providing access to all users. These

improvements are intended to support scalability, performance, and accessibility.

37

8. Literature

[1] P. Lewis et al., "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,"

in Proceedings of the 34th International Conference on Neural Information Processing

Systems (NeurIPS'20), 2020, pp. 9459-9474. doi: 10.48550/arXiv.2005.11401.

[2] P. Ji et al., "A Survey on Hallucination in Large Language Models: Principles,

Taxonomy, Challenges, and Open Questions," 2023. [Online]. Available:

https://arxiv.org/abs/2304.07857.

[3] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt, "Practical and

optimal LSH for angular distance," in Advances in Neural Information Processing Systems,

vol. 30, pp. 1225-1233, 2018.

[7] A. Vaswani et al., "Attention Is All You Need," in Proceedings of the 31st International

Conference on Neural Information Processing Systems (NIPS'17), Long Beach, CA, USA,

2017, pp. 6000-6010. doi: https://dl.acm.org/doi/10.5555/3295222.3295349

[8] T. Brown et al., "Language Models are Few-Shot Learners," in Advances in Neural

Information Processing Systems, vol. 33, pp. 1877-1901, 2020. doi:

10.48550/arXiv.2005.14165.

[10] A. Radford et al., "Improving Language Understanding by Generative Pre-Training,"

OpenAI, 2018. [Online]. Available: https://www.semanticscholar.org/paper/Improving-

Language-Understanding-by-Generative-Radford-

Narasimhan/4856ef15e8bb2b3a85bbaab0e9ac1540e9b981a2.

[11] Alabdulmohsin I., Lucic M., “A Near-Optimal Algorithm for Debiasing Trained

Machine Learning Models” 2021. [Online], Available: https://arxiv.org/abs/2106.12887

[12] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In Proceedings of the 27th

Annual Conference on Neural Information Processing Systems, pages 3111– 3119, 2013.

[13] Malkov, Y. A., & Yashunin, D. A. (2018). Efficient and robust approximate nearest

neighbor search using Hierarchical Navigable Small World graphs. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 42(4), 824-836.

[14] A Comprehensive Survey on Vector Database: Storage and Retrieval Technique,

Challenge

[15] Understanding Langchains RecursiveCharacterTextSplitter :

https://dev.to/eteimz/understanding-langchains-recursivecharactertextsplitter-2846

[16] Web framework benchmark:

https://www.techempower.com/benchmarks/#hw=ph&test=fortune§ion=data-r22

https://arxiv.org/abs/2304.07857
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/4856ef15e8bb2b3a85bbaab0e9ac1540e9b981a2
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/4856ef15e8bb2b3a85bbaab0e9ac1540e9b981a2
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/4856ef15e8bb2b3a85bbaab0e9ac1540e9b981a2
https://arxiv.org/abs/2106.12887
https://www.techempower.com/benchmarks/#hw=ph&test=fortune§ion=data-r22

38

[17] Python Starlette framework “Official web page for the Starlette framework”.

https://www.starlette.io/ (accessed August 23, 2024.)

[18] Pydantic framework “Official documentation page for the pydantic framework”.

https://docs.pydantic.dev/latest/ (accessed August 23, 2024.)

[19] Large Language Models: A Survey Shervin Minaee, Tomas Mikolov, Narjes Nikzad,

Meysam Chenaghlu Richard Socher, Xavier Amatriain, Jianfeng Gao

[20] Vuejs JavaScript framework “Official introductory web page for VueJs”.

https://vuejs.org/guide/introduction.html (accessed June 27, 2024)

[31] MongoDB atlas : https://www.mongodb.com/products/platform/atlas-database

[21] NodeJs Official website “Official NodeJs documentation detailing the V8 engine”.

https://nodejs.org/en/learn/getting-started/the-v8-javascript-engine (accessed August 19,

2024)

[22] Wikitravel website “Wikitravel main page”. https://wikitravel.org/en/Main_Page

(accessed June 19, 2024)

[23] LangcChain website “Main page for LangChain framework”. https://www.langchain.com/

(accessed June 20, 2024)

[24] Langchain paper : An Effective Query System Using LLMs and LangChain

https://www.researchgate.net/publication/372529063_An_Effective_Query_System_Using_L

LMs_and_LangChain

[25] Pinecone website “Official main page for PineCone vector database” .

https://www.pinecone.io/ (accessed August 16, 2024)

[26] FastAPI, "FastAPI dependancy documentation,"

https://fastapi.tiangolo.com/tutorial/dependencies/ (accessed Aug. 23, 2024).

[27] FastAPI, “Fast API security documentation article”

https://fastapi.tiangolo.com/tutorial/security/ (accessed Aug 23, 2024)

[28] Chunking mechanisms and learning , Fernard Gobet (2012)

https://www.researchgate.net/publication/308158087_Chunking_mechanisms_and_learning

[29] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha, "A Systematic Survey

of Prompt Engineering in Large Language Models: Techniques and Applications," arXiv

preprint arXiv:2402.01234, Feb. 2024. [Online]. Available: https://arxiv.org/abs/2402.01234

[30] Pythorch “Pythorch official web page” https://pytorch.org/ (accessed Aug, 23, 2024)

[31] Acler, M. “The 50 Most Visited Cities in Europe — A Data-Driven Guide for Travel

Bloggers” https://medium.com/online-travel-partners/the-50-most-visited-cities-in-europe-a-

data-driven-guide-for-travel-bloggers-5ebeaa6e24cb (accessed June 16, 2024)

[32] Z. Wang et al., "Speculative RAG: Enhancing Retrieval Augmented Generation through

Drafting," presented at the [Arxiv, 2024].

[33] Zendesk, “Zendesk official AI trust page with full privacy disclosure”,

https://www.zendesk.com/trust-center/#ai (accessed, Aug 21, 2024)

[34] IBM Watsonx Assistant, “Official web page detailing IBM’s conversational AI ”,

https://www.ibm.com/products/watsonx-assistant (accessed Aug 21, 2024)

[35] CopyAI AI chat, “AI Chat: Your GTM team can do more with less

”, (accessed July 16, 2024)

https://www.starlette.io/
https://docs.pydantic.dev/latest/
https://vuejs.org/guide/introduction.html
https://www.mongodb.com/products/platform/atlas-database
https://nodejs.org/en/learn/getting-started/the-v8-javascript-engine
https://wikitravel.org/en/Main_Page
https://www.langchain.com/
https://www.researchgate.net/publication/372529063_An_Effective_Query_System_Using_LLMs_and_LangChain
https://www.researchgate.net/publication/372529063_An_Effective_Query_System_Using_LLMs_and_LangChain
https://www.pinecone.io/
https://fastapi.tiangolo.com/tutorial/dependencies/
https://fastapi.tiangolo.com/tutorial/security/
https://www.researchgate.net/publication/308158087_Chunking_mechanisms_and_learning
https://arxiv.org/abs/2402.01234
https://pytorch.org/
https://medium.com/online-travel-partners/the-50-most-visited-cities-in-europe-a-data-driven-guide-for-travel-bloggers-5ebeaa6e24cb
https://medium.com/online-travel-partners/the-50-most-visited-cities-in-europe-a-data-driven-guide-for-travel-bloggers-5ebeaa6e24cb
https://www.zendesk.com/trust-center/#ai
https://www.ibm.com/products/watsonx-assistant

39

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding," arXiv preprint arXiv:1810.04805,

Oct. 2018, revised May 2019.

[37] Pinecone security page, “Trust and security”, https://www.pinecone.io/security/ ,

(accessed Aug 21, 2024)

[38] Efimov V., “Similarity Search, Part 4: Hierarchical Navigable Small World (HNSW)”,

https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-

hnsw-2aad4fe87d37, (accessed Aug 23, 2024)

https://www.pinecone.io/security/
https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37
https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37

40

9. List of tables

Table 1Evaluation of responses for RAG extended assistant and ChatGPT 31

41

10. List of illustrations

Figure 1Factual and faithfulness hallucination examples [2] .. 3

Figure 2 Visual demonstration of how RAG works .. 5

Figure 3 Visual representation of semantic meaning in a high dimensional space 6

Figure 4 Hierarchical Navigable Small World Graph [izvor slike] ... 8

Figure 5 Visual interface of TravelTalk application .. 11

Figure 6 Figure 6 Pinecone user interface ... 14

Figure 7 API performance benchmark ... 16

Figure 8MediaWiki Get request ... 18

Figure 9 TrevelTalk vector count in Pinecone dashboard ... 21

Figure 10 ChatGPT response ... 23

Figure 11 Rag extended model response ... 24

Figure 12 API response .. 26

Figure 13 Frontend implementation of RAG extended chatbot... 29

Figure 14 Example of hallucination ... 31

Figure 15 Example of improper retrieval ... 31

Figure 16 Input 1” List some restaurants in Alicante”” - Travel assistant response 33

Figure 17 Input 1: “List some restaurants in Alicante” - ChatGPT-4o response..................... 33

Figure 18 Input 2 “Tell me about Nemesio Casa” - Travel assistant response........................ 34

Figure 19 Input 2 “Tell me about Nemesio Casa”” - ChatGPT-4o response 34

Figure 20 Input 3” “Can I take a train to Dubrovnik?”” - Travel assistant response 35

Figure 21 Input 3“Can I take a train to Dubrovnik?” - ChatGPT-4o response........................ 35

11. List of attachments

Attachment 1: TravelTalk GitHub repository, https://github.com/Sventajz/Travel.talk-WIP-

Attachment 2: RAG extended travel assistant GitHub repository,

https://github.com/Sventajz/rag_api

https://github.com/Sventajz/Travel.talk-WIP-
https://github.com/Sventajz/rag_api

