
Označavanje, izlučivanje i prikazivanje ključnih riječi
iz višejezičnih tekstova

Aljević, Dino

Undergraduate thesis / Završni rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Rijeka / Sveučilište u Rijeci

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:195:593934

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-01

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of
Informatics and Digital Technologies - INFORI
Repository

https://urn.nsk.hr/urn:nbn:hr:195:593934
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://repository.inf.uniri.hr
https://zir.nsk.hr/islandora/object/infri:489
https://www.unirepository.svkri.uniri.hr/islandora/object/infri:489
https://dabar.srce.hr/islandora/object/infri:489

University of Rijeka – Department of Informatics

Jednopredmetna informatika

Dino Aljević

Keyword tagging, extraction and
visualisation from multilingual texts

Bachelor’s thesis

Mentor: prof. dr. sc. Sanda Martinčić - Ipšić dipl. ing.

Rijeka, 18.9.2019.

Sveučilište u Rijeci – Odjel za informatiku

Jednopredmetna informatika

Dino Aljević

Označavanje, izlučivanje i prikazivanje
ključnih riječi iz višejezičnih tekstova

Završni rad

Mentor: prof. dr. sc. Sanda Martinčić - Ipšić dipl. ing.

Rijeka, 18.9.2019.

Abstract
Application described in this thesis is a web application which performs keyword

extraction and visualisation on texts written in Croatian, English and Italian

language. Keyword extraction is a process of determining which terms best describe

a given document with a caveat that such terms must be present in the document

itself. Manual keyword extraction is a very time consuming and tedious task making

it a perfect candidate for automation.

Application is written in Python on top of Django framework and uses Maui topic

indexing algorithm developed at the University of Waikato. The thesis serves as a

documentation of practical use of the algorithm focused on keyword extraction task

without the use of controlled vocabulary and as a documentation of the application

architecture and design decisions behind it.

Keywords: keyword extraction, Maui, web application

Sažetak
U ovome radu je opisana web aplikacija koja izlučuje i vizualizira ključne riječi iz

tekstova napisanih na hrvatskom, engleskom i talijanskom jeziku. Izlučivanje ključnih

riječi je proces određivanja termina koji najbolje opisuju dani dokument uz uvjet da

se termini moraju pojavljivati u samom dokumentu. Ručno izlučivanje ključnih riječi

je dugotrajan i zamoran posao, pa je njegova automatizacija poželjna.

Aplikacija je napisana u programskom jeziku Python na temelju Django frameworka i

koristi Maui topic indexing algoritam razvijen na Sveučilištu u Waikatu. Ovaj završni

rad služi kao svojevrsna dokumentacija korištenja algoritma u postupku izlučivanja

ključnih riječi bez uporabe vokabulara i dokumentacija arhitekturu aplikacije, te

odluka koje stoje iza nje.

Ključne riječi: izlučivanje ključnih riječi, Maui, web aplikacija

Table of Contents
Abstract... I

Sažetak.. III

Table of Contents.. IV

1. Introduction..1

2. Methodology and background terminology...2

2.1. Maui and Kea...4

3. Implementation of keyword extraction..5

3.1. Data preparation...5

3.2. Building the model...6

3.3. Extracting keywords..7

3.4. Croatian and Italian languages..8

4. Application architecture...10

4.1. Project structure..10

4.2. Database..11

4.3. Keyword extraction...13

4.4. Keyword visualisation..16

5. Conclusion..18

References..19

Appendix...20

Table of Figures...XXI

1. Introduction
Keyword extraction is a process of determining which terms best describe a given

document with a caveat that such terms must be present in the document itself.

Keywords can be used in wide array of tasks such as: (Beliga et al., 2015)

• automatic generation of document index,

• querying in information retrieval systems (e.g. search engines),

• categorisation and classification (e.g. categorising news articles).

Manual keyword extraction is a time consuming and tedious task which makes it a

perfect candidate for automation. It is no surprise then, that a number of different

keyword extraction algorithms have been developed in the past. Algorithms are

usually supervised or unsupervised, using standard machine learning methods

(Beliga et al., 2015). Recently, graph enabled keyword extraction has gained much

attention.

The algorithm featured in the thesis is Maui (Medelyan, 2009). The algorithm has

been chosen because of it’s human-competitive performance and proven

multilingual capabilities.

The first part of the thesis will describe practical use of the algorithm in the keyword

extraction process including the steps needed to adapt it to work with Croatian and

Italian language.

The second part discusses the web application’s architecture focusing on the

different key components that make up the application. This part also glosses over

the steps needed to implement additional algorithms.

1

2. Methodology and background terminology
This chapter aims to clear up confusion by bringing up similarities and differences

between terms revolving around information extraction and retrieval. In addition, it

lists metrics traditionally used to evaluate information retrieval systems.

Information retrieval and information extraction may sound identical, but the

former pertains to retrieval of documents, often as the result of answering a query.

The latter refers to acquiring information from a text (unstructured data) by looking

for a particular class of object and it’s relationships. (Russel & Norvig, 2009)

Keyword extraction algorithms examine different words in text, choosing them

based on their properties (e.g. frequency, length, etc.). Thus we can conclude that

keyword extraction falls under the latter category.

Another pair of terms which appear to be the same thing when not looking beneath

the surface are term assignment and keyword extraction. While both serve

ultimately the same goal, the underlying principle is different.

In term assignment we assign keywords to a document based on controlled

vocabulary. In keyword extraction, controlled vocabulary may or may not be used,

however, a key difference is that extracted keywords must be present in the original

text. Topic indexing is a more general term that encompasses both term assignment

and keyword extraction (Medelyan, 2009).

Another way of assigning terms to a document is by tagging. No criteria are placed

on a word used as a tag and therefore it can be chosen freely. Tagging is mainly used

on collaborative sites (e.g. YouTube content, blog posts) (Medelyan, 2009).

Performance of IR systems is measured by scoring set of queries and corresponding

result sets with respect to human judgement. Traditionally, two measures have

been used: precision and recall (Russel & Norvig, 2009).

The standard formula for precision P, and recall R as defined in (Medelyan, 2009)

are:

2

R=
#correct extracted topic
#manually assigned topics

P=
#correct extracted topic
#all extracted topics

(Medelyan, 2009) also provides formula for F-measure, a combination of precision,

recall and a factor β which can be used to give more significance to either precision

or recall.

By assuming β = 1, it is giving equal significance to both precision and recall. Thus we

get F1-measure as a harmonic mean of recall and precision:

2.1. Maui and Kea

Maui is topic indexing algorithm built on top of Kea algorithm, inheriting many of

Kea's components. Unlike Kea whose sole purpose was keyword extraction; Maui

can also perform term assignment using controlled vocabulary or Wikipedia

(Medelyan, 2009).

The algorithm can be summarized in four steps: (Medelyan, 2009)

1. generate candidate topics,

2. compute their features,

3. build topic indexing model and

4. apply the model in topic indexing tasks.

Maui inherits supervising learning approach from Kea when it comes to building the

model.

(Russel & Norvig, 2009) define supervised machine learning as observing input-

output pairs in order to determine a function that maps input to output. In contrast,

in unsupervised learning an agent attempts to discover patterns without explicit

labelling of the input.

In Maui, input-output pairs consist of a document and manually assigned keywords.

As is often the case, before applying (supervised) machine learning one has to

prepare (annotate) the data used in the process.

3

Fβ=(1+β)
PR

β
2P+R

F1=(1+1)
PR

12P+R
=
2 PR
P+R

3. Implementation of keyword extraction

3.1. Data preparation

In data preparation process documents containing texts in Croatian, English and

Italian language from TriKEDS corpus (Beliga, 2019) were used. Initially all

documents to UTF-8 encoding and cleaned up.

The following steps were performed:

1. all documents were converted to UTF-8 encoding.

2. duplicate keywords were removed and

3. encoding errors were fixed.

First two steps were done automatically using scripts written in Python, encoding

errors were fixed by hand, but offending characters were located using Python

script.

First two steps are very straightforward, so let us focus on the third.

Documents used to build the model were encoded differently. file program present

on most Linux distributions was used to determine the encoding of original

documents. The following encodings were reported:

• ASCII,

• ISO-8859-1,

• UTF-8 Unicode,

• UTF-8 Unicode with byte order mark and

• Non-ISO extended-ASCII (unknown).

In cases where document encoding had been determined, it was simply a matter of

reading the document in it’s encoding and writing it back in UTF-8. Non-ISO

extended-ASCII encoding was assumed to be Windows-1250. The assumption is an

educated guess based on the prevalence of Windows operating system on desktop

and the fact that Windows-1250 is used to represent texts in Eastern European

languages.

4

In the original corpus, some of the characters have been incorrectly written or

encoded, for example, surnames ending in “-ić” written as “-iæ” or “srđ” encoded as

“srð”. Because keywords from multiple sources pertaining to the same texts had

been collated into one text file, the text file ended up having both the correct

spelling and the incorrect one. A simple algorithm was devised to locate such

misspellings.

1. For every token in file iterate over tokens appearing after it.

2. If a token can be encoded in ASCII, skip it because it’s not the one containing

non English characters.

3. If Levenshtein distance between token is 1, it is a possible misspelling. Indeed,

Levenshtein distance between “srđ” and “srð” is exactly 1.

4. Output the location of the tokens in file.

The algorithm is not sophisticated, it picks up valid tokens like “Riječke” and

“Riječka” as potential misspellings, but the set of potential misspelled words was

small enough to make this algorithm and subsequent manual corrections

reasonable. Although the whole process could be improved and automated from

start to finish, the solution was efficient enough for task at hand.

3.2. Building the model

As previously mentioned, Maui expects pairs of text documents and keywords to

build the model. Files containing keywords should have the same file name as the

corresponding text, but with .key extension instead of .txt.

A model can be built by running MauiModelBuilder. It requires three parameters:

• -l <directory name> specifies path to the directory containing .txt and .key

files,

• -m <model name> specifies file path where generated model will be saved,

• -v <vocabulary name> specifies path to the vocabulary to use. If vocabulary is

not used, -v none should be passed instead1.

1 Newer versions of Maui don't require explicit -v none, it is implied instead.

5

Assume class files are stored in bin directory, required libraries in lib and .txt and

.key files in data, we can build a model by executing following command in the

terminal of our choice:

java -cp “lib/*:bin” maui.main.MauiModelBuilder -l data -m model -v none

3.3. Extracting keywords

Assume the same directory structure as in the previous section and assume we want

to extract keywords from a text file located in target directory containing a single

file. We can run the following command:

java -cp “lib/*:bin” maui.main.MauiTopicExtractor -l target -m model -v
none

Output will look similar to the figure below:

Extracted keywords are stored in .key files. If .key files already exist, Maui will use

them as a gold standard to evaluate the performance of extracted keywords.

We can use -d parameter to turn on debugging output. Among other information,

Maui will also output extracted keywords. The Python application parses

(debugging) output to retrieve extracted keywords and evaluation metrics.

6

Figure 1: MauiTopicExtractor output

Maui can also be used as a Java library, but since the web application is written in

Python, using Java library is not possible2.

3.4. Croatian and Italian languages

Maui is capable of working with languages other than English (Medelyan, 2009). This

was the main reason for selecting the Maui among many available solutions for

keyword extraction. Additionally, Maui provides examples for French and Spanish as

well. To use a language with Maui, it requires a list of stop words and a stemmer for

the language.

Stopwords are common words which do not carry strong semantic meaning, but are

required by language syntax (Beliga et al., 2015). Because of their lack of semantic

meaning, they are often removed during text preprocessing.

In addition to removing stopwords, words in text are often stemmed, meaning they

are reduced to their root form. Such algorithms are called stemming algorithms

(Segaran, 2007).

Adapting Maui to work with other languages is a rather straightforward task, even

more so if you have readily available stemmers for a language you want to use. By

looking at Maui source code, we can see that a stemmer is class which inherits from

Stemmer abstract class. A stemmer class must implement stem method which

accepts a string (word) and returns it’s stemmed version.

2 It may be possible to use Maui as a library from Python using Py4J, but due to personal lack of experience in Java

ecosystem, using it as a command line tool seemed like a simpler choice.

7

Figure 2: MauiTopicExtractor output with debugging turned on

Stop words are implemented as a class inheriting a Stopwords abstract class. Such

classes hold reference to file path containing a list of stop words and a isStopword

method which accepts a string and returns boolean value depending or whether the

argument is a stopword or not.

Fortunately both Croatian and Italian stemmers are available online with permissive

licenses (GPL 3 and the 3-clause BSD license respectively).

Croatian stemmer was developed by Nikola Ljubešić and Ivan Pandžić (Ljubešić &

Pandžić, 2012). The stemmer is a refined version of stemmer presented in (Ljubešić

et al., 2007). It was originally written in Python, but Java adaptation was introduced

in (Batanović et al., 2016). The code was slightly modified to satisfy Maui’s interface

requirements and unnecessary code was removed (e.g. Cyrillic to Latin conversion).

Italian stemmer is a part of libstemmer library originally written by Dr. Martin Porter

and later adapted for Java by Richard Boulton (Porter & Boulton, 2002). Using the

stemmer in Maui is a simple matter of writing a stemmer class which calls

libstemmer to perform the actual stemming.

Stopword classes are implemented in the same way as Maui’s StopwordsEnglish

class with path to file containing stop words hard coded in the it’s constructor.

With everything in place, we can tell Maui to use new stemmer class by passing -t

parameter when executing either MauiModelBuilder or MauiTopicExtractor.

Stopwords class can be specified using -s parameter.

For completeness, here is an example of how we can build a model using

CroatianStemmer and StopwordsCroatian classes.

java -cp “lib/*:bin” maui.main.MauiModelBuilder -l data -m model -v none
-t CroatianStemmer -s StopwordsCroatian

8

4. Application architecture
Maui is only a part (an important part) of a larger web application written in Python

on top of Django web framework (Django, 2019) and a host of other web

development technologies. The choice of framework and keyword extraction

algorithm had great influence on the overall design of the application itself.

Following sections will discuss application architecture, starting from Django

framework and the way Django projects are structured, narrowing down to the

specific components and program units.

4.1. Project structure

Django projects consist of a project configuration and a single or multiple

applications where each application performs some task in the overall web

application. The term “application” may be a bit misleading here. Each Django

application is just a Python package that provides set of features, interacts with the

rest of the framework and often has it’s own configuration. To avoid confusion,

here we refer to the overall web application built on top of Django framework as

web application or project and the aforementioned Python packages as Django

applications.

Because individual Django application performs some task, it is logical to separate

multiple applications based on some criteria, e.g. area of responsibility. This

approach of creating decoupled, reusable application is even encouraged by Django

and it’s DRY3 approach to development. After all, isn’t it better to write an

application once and then reuse it across different projects than to write the same

application over and over again?

When considering how to separate the web application into multiple areas of

responsibility, this approach presented itself as the most efficient:

• User interface and user interaction are one area of responsibility; therefore it

will be a responsibility of a single Django application. This application also

handles form validation and algorithm selection. Because this application

serves as an entry point it has been named “core”.

3 Don't repeat yourself, software engineering principle of reducing repetition of software patterns.

9

• Keyword extraction and visualisation will be another application aptly named

“kwextractor”.

Let us consider the benefits of such approach:

1. Keyword extraction application can be reused across different projects.

2. Because the application doesn’t have any views or templates, only model

classes, we can do away with user interface entirely and implement keyword

extraction differently (e.g. web API).

The question now is whether keyword visualisation should be a part of kwextractor,

core or it’s own application? The reason keyword visualisation functionality has

been included in kwextractor application is grounded in model migrations and will

be discussed later.

4.2. Database

Almost every application needs a way to store data it works with and web

application presented in this thesis is no different. The web application uses SQLite 3

(SQLite, 2018) for storing text, keywords and other relevant data.

Initially, it was intended for text to be stored in the same JSON file along with

related data such as keywords, word cloud image path, etc. In the end, the idea was

scrapped in favour of using SQLite database. There are three primary reasons for

that decision:

1. SQLite is already supported by Django framework and works nicely with

Django object relational mapper. This avoids writing the code tasked with

CRUD4 operations on JSON files from scratch.

Furthermore, text files and keywords have clear relationship and any other

scheme would either mimic relational model or be close enough not to

warrant sidestepping DRY principle.

2. SQLite is extremely lightweight compared to other relational database

management systems such as PostgreSQL (PostgreSQL, 2019). The whole

database is stored in a single file.

3. We can leverage Django’s migrations feature.

4 Create, read, update and delete.

10

To elaborate on reason number three, one needs to know a bit about Django’s

models.

In Model-View-Controller (MVC) frameworks such as Django5 models represent

definitive source of information about data and include any logic which operates on

said data. Models are also used by Django to create and maintain database,

mapping each model to a single table. In other words, model definitions determine

final database layout.

Django keeps track of changes made to the models and database using migrations.

Django’s documentation compares migrations to version control for database

schemas. They are invaluable tool for keeping database consistent across different

revisions, especially in the early stages when final database layout is not known.

5 Actually, Django is a Model-Template-View framework: the view decides which data to present, template specifies

how the data should be presented and the controller part is handled by the framework itself.

11

4.3. Keyword extraction

While Maui is de facto algorithm for keyword extraction used in this (web)

application, the application has eben designed with multiple algorithms in mind and

can be extended with almost zero effort spent on code refactoring. This is facilitated

by clean design where working components depend on abstractions rather than

concrete implementations.

The following UML class diagram describes relationship between classes working

together to extract keywords.

To understand what is going on, we can look at the way the web application calls

Maui to perform extraction task. Extraction algorithms are implemented in extractor

classes which inherit from ExtractorBase. Extractors use ExtractorModelBase as the

source of text from which to extract keywords creating a collection of KeywordBase

subclasses. Because both ExtractionModelBase and KeywordBase are Django models

12

Figure 3: UML class diagram of classes related to keyword extraction task

and need to be bound by foreign key, it is not possible to have a generic keyword

class.

extract method returns concrete ExtractorResultBase from which the view will read

evaluation metrics and save the metrics in the extractor model.

The whole process begins upon submitting a form. The corresponding view fetches

extraction model from the database (i.e. text file), instantiates Maui extractor and

calls it’s extract method to perform keyword extraction. The important thing to note

here is that view automatically assumes Maui as the extraction algorithm, it doesn’t

consider any other algorithm. Refactoring this view so that it selects an algorithm

based on input would be the first step in introducing new extraction algorithms.

To summarise, in order to expand algorithm selection, we need to:

1. Refactor the view so it can select keyword extraction algorithm based on user

input. If done correctly, this has to be performed only once.

2. Related to the first point, we need to update user interface to allow user

interaction.

3. Most importantly, implement the algorithm by subclassing ExtractorBase.

Maui extractor performs couple of things. First it creates .txt from which to extract

text and .key file to use for evaluation. These files are created based on data stored

in the extractor model. The extractor then runs Maui algorithm as a subprocess,

passing the correct arguments and parsing the output.

How does the extractor determine what command line arguments to pass to Maui,

specifically what model, stemmer and stopword class to use? Command line

arguments can be configured in the project settings. A string passed from the form is

used as an index into MAUI_EXTRACTOR_CONFIGURATION dictionary whose values

are tuples containing path to the model and names of stemmer and stopword

classes. This allows us to configure different combinations of models, stemmers and

stopwords without modifying the extractor code.

The extractor needs to return an extractor result instance. Extractor result classes

need to have references to assigned and extracted keywords to be able to calculate

precision, recall and F-measure. Maui already outputs those metrics, so there is no

need to recalculate them, instead we pass them to the MauiExtractionResult

constructor.

13

We can see the importance of using Maui’s -d parameter here. Maui outputs

extracted keywords to a .key file if it does not exist. If it does exist, it reads a .key file

and calculates evaluation metrics, it does not overwrite .key files with automatically

extracted keywords. Had we not used -d parameter, we would have to run Maui

twice, first with existing .key file to calculate evaluation metrics and then again

without .key file to retrieve keywords. By using -d parameter, we can parse

keywords from standard output instead.

Maui assumes F1-measure, giving equal significance to both precision and recall. The

question is, should other extractors use the same value for β? While not enforced

programmatically, consistency should be favoured instead of versatility. User

interface further enforces this idea by explicitly labelling the field “F1 Measure”.

14

Figure 4: Text file detail view

4.4. Keyword visualisation

The web application uses word clouds to visualise keywords. Word clouds are

rendered on the server anytime keywords are extracted or assigned. This has

considerable performance impact as rendering is an intensive task.

Again we start with UML class diagram showing a subset of relevant classes.

WordCloudBase is a Django model used for storing path to rendered word cloud

image, as well as maintaining link to extractor model used as a source. Due to same

reasons as KeywordBase, concrete implementations of WordCloudBase are bound to

concrete extractor models.

WordCloudBase depends on WordCloud class to do actual rendering. Because we

might want to swap WordCloud implementations in the future, creation of word

cloud objects is delegated to WordCloudFactory class.

15

Figure 5: UML class diagram of classes related to keyword visualisation

Final piece of the puzzle is the WordCloudColorScheme class. It is a simple class used

to define colouring for word cloud images. Specific class is used for this task because

we want to have the ability to easily swap colour schemes and introduce complex

logic for colouring individual words.

16

Figure 6: Example of a generated word cloud

5. Conclusion
In this thesis we have discussed keyword extraction and shown example of how

Maui algorithm can be used to extract keywords. We even have production ready

web application capable of performing keyword extraction by leveraging different

keyword extraction algorithms. Despite that, we have seen only a glimpse of natural

language processing field and barely scratched the surface Maui’s workings. It

serves as a testament to how complex the field and the algorithms really are when

we can build a full functional application without really knowing what goes behind

the algorithms.

There is much more to be said, not just about natural language processing or Maui

algorithm, but about the web application itself. Further work can be focused on

implementing new extractors, offloading keyword visualisation to client in order to

improve performance or even on improving stability and robustness. One idea is to

implement some sort of user account system. In the current version the only way to

limit access to the application is to configure web server authentication. Custom

account system would enable interesting features such as per-user model selection,

limits on text document length for each user and even allow administrators to

configure the application from the interface. Perhaps, such features coupled with

general improvements on all fronts could in time make the application commercially

viable.

17

References
S. Beliga, A. Meštrović, S. Martinčić-Ipšić. (2015). An Overview of Graph-Based Keyword Extraction Methods

and Approaches. Journal of Information and Organizational Sciences, 39(1)

O. Medelyan. (2009). Human-competitive automatic topic indexing (Thesis). The University of Waikato,

Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/3513

S. Russel, P. Norvig (2009). Artificial Intelligence: A modern approach. Upper Saddle River, NJ: Pearson

S. Beliga, (2019). Keyword Extraction Based on Structural Properties of Language Complex Networks

(Dissertation). The University of Rijeka

T. Segaran (2007). Programming Collective Intelligence: Building Smart Web 2.0 Applications. Sebastopol:

O'Reilly Media

N. Ljubešić, I. Pandžić (2012). Stemmer for Croatian. The University of Zagreb. Retrieved from

http://nlp.ffzg.hr/resources/tools/stemmer-for-croatian/

N. Ljubešić, D. Boras, O. Kubelka. (2007). Retrieving Information in Croatian: Building a Simple and Effcient

Rule-based Stemmer. Retrieved from http://nlp.ffzg.hr/data/publications/nljubesi/ljubesic07-retrieving.pdf

V. Batanović, B. Nikolić, M. Milosavljević. (2016). Reliable Baselines for Sentiment Analysis in Resource-

Limited Languages: The Serbian Movie Review Dataset. Retrieved from

http://www.lrec-conf.org/proceedings/lrec2016/pdf/284_Paper.pdf

M. Porter, R. Boulton (2002). Java libstemmer library. Retrieved from http://snowball.tartarus.org/

Django (Version 2.2) (2019). Retrieved from https://djangoproject.com/

SQLite (Version 3.22.0) (2018). Retrieved from https://sqlite.org/

PostgreSQL (2019). Retrieved from https://www.postgresql.org/

18

Appendix
Appendix includes CD-ROM containing a copy of the web application featured in the

thesis and the accompanying documentation.

19

Table of Figures
 Figure 1: MauiTopicExtractor output...7

 Figure 2: MauiTopicExtractor output with debugging turned on..8

 Figure 3: UML class diagram of classes related to keyword extraction task..13

 Figure 4: Text file detail view...15

 Figure 5: UML class diagram of classes related to keyword visualisation..16

 Figure 6: Example of a generated word cloud...17

	Abstract
	Sažetak
	Table of Contents
	1. Introduction
	2. Methodology and background terminology
	2.1. Maui and Kea

	3. Implementation of keyword extraction
	3.1. Data preparation
	3.2. Building the model
	3.3. Extracting keywords
	3.4. Croatian and Italian languages

	4. Application architecture
	4.1. Project structure
	4.2. Database
	4.3. Keyword extraction
	4.4. Keyword visualisation

	5. Conclusion
	References
	Appendix
	Table of Figures

